IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v79y2021i3d10.1007_s10589-021-00284-5.html
   My bibliography  Save this article

Fastest rates for stochastic mirror descent methods

Author

Listed:
  • Filip Hanzely

    (King Abdullah University of Science and Technology (KAUST))

  • Peter Richtárik

    (King Abdullah University of Science and Technology (KAUST)
    Moscow Institute of Physics and Technology (MIPT))

Abstract

Relative smoothness—a notion introduced in Birnbaum et al. (Proceedings of the 12th ACM conference on electronic commerce, ACM, pp 127–136, 2011) and recently rediscovered in Bauschke et al. (Math Oper Res 330–348, 2016) and Lu et al. (Relatively-smooth convex optimization by first-order methods, and applications, arXiv:1610.05708 , 2016)—generalizes the standard notion of smoothness typically used in the analysis of gradient type methods. In this work we are taking ideas from well studied field of stochastic convex optimization and using them in order to obtain faster algorithms for minimizing relatively smooth functions. We propose and analyze two new algorithms: Relative Randomized Coordinate Descent (relRCD) and Relative Stochastic Gradient Descent (relSGD), both generalizing famous algorithms in the standard smooth setting. The methods we propose can be in fact seen as particular instances of stochastic mirror descent algorithms, which has been usually analyzed under stronger assumptions: Lipschitzness of the objective and strong convexity of the reference function. As a consequence, one of the proposed methods, relRCD corresponds to the first stochastic variant of mirror descent algorithm with linear convergence rate.

Suggested Citation

  • Filip Hanzely & Peter Richtárik, 2021. "Fastest rates for stochastic mirror descent methods," Computational Optimization and Applications, Springer, vol. 79(3), pages 717-766, July.
  • Handle: RePEc:spr:coopap:v:79:y:2021:i:3:d:10.1007_s10589-021-00284-5
    DOI: 10.1007/s10589-021-00284-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-021-00284-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-021-00284-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. NESTEROV, Yurii, 2012. "Efficiency of coordinate descent methods on huge-scale optimization problems," LIDAM Reprints CORE 2511, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Heinz H. Bauschke & Jérôme Bolte & Marc Teboulle, 2017. "A Descent Lemma Beyond Lipschitz Gradient Continuity: First-Order Methods Revisited and Applications," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 330-348, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin Liu & Sam Davanloo Tajbakhsh, 2023. "Stochastic Composition Optimization of Functions Without Lipschitz Continuous Gradient," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 239-289, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "A Block Inertial Bregman Proximal Algorithm for Nonsmooth Nonconvex Problems with Application to Symmetric Nonnegative Matrix Tri-Factorization," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 234-258, July.
    2. Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "Multi-block Bregman proximal alternating linearized minimization and its application to orthogonal nonnegative matrix factorization," Computational Optimization and Applications, Springer, vol. 79(3), pages 681-715, July.
    3. Abbaszadehpeivasti, Hadi, 2024. "Performance analysis of optimization methods for machine learning," Other publications TiSEM 3050a62d-1a1f-494e-99ef-7, Tilburg University, School of Economics and Management.
    4. Shota Takahashi & Mituhiro Fukuda & Mirai Tanaka, 2022. "New Bregman proximal type algorithms for solving DC optimization problems," Computational Optimization and Applications, Springer, vol. 83(3), pages 893-931, December.
    5. Regina S. Burachik & Yaohua Hu & Xiaoqi Yang, 2022. "Interior quasi-subgradient method with non-Euclidean distances for constrained quasi-convex optimization problems in hilbert spaces," Journal of Global Optimization, Springer, vol. 83(2), pages 249-271, June.
    6. Zamani, Moslem & Abbaszadehpeivasti, Hadi & de Klerk, Etienne, 2024. "The exact worst-case convergence rate of the alternating direction method of multipliers," Other publications TiSEM f30ae9e6-ed19-423f-bd1e-0, Tilburg University, School of Economics and Management.
    7. Xuefei Lu & Alessandro Rudi & Emanuele Borgonovo & Lorenzo Rosasco, 2020. "Faster Kriging: Facing High-Dimensional Simulators," Operations Research, INFORMS, vol. 68(1), pages 233-249, January.
    8. HyungSeon Oh, 2021. "Distributed optimal power flow," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-27, June.
    9. TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Discussion Papers CORE 2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. Zehui Jia & Jieru Huang & Xingju Cai, 2021. "Proximal-like incremental aggregated gradient method with Bregman distance in weakly convex optimization problems," Journal of Global Optimization, Springer, vol. 80(4), pages 841-864, August.
    11. Andrej Čopar & Blaž Zupan & Marinka Zitnik, 2019. "Fast optimization of non-negative matrix tri-factorization," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-15, June.
    12. Masoud Ahookhosh, 2019. "Accelerated first-order methods for large-scale convex optimization: nearly optimal complexity under strong convexity," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(3), pages 319-353, June.
    13. Duy Khuong Nguyen & Tu Bao Ho, 2017. "Accelerated parallel and distributed algorithm using limited internal memory for nonnegative matrix factorization," Journal of Global Optimization, Springer, vol. 68(2), pages 307-328, June.
    14. Abbaszadehpeivasti, Hadi & de Klerk, Etienne & Zamani, Moslem, 2023. "Convergence rate analysis of randomized and cyclic coordinate descent for convex optimization through semidefinite programming," Other publications TiSEM 88512ac0-c26a-4a99-b840-3, Tilburg University, School of Economics and Management.
    15. Ion Necoara & Andrei Patrascu, 2014. "A random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints," Computational Optimization and Applications, Springer, vol. 57(2), pages 307-337, March.
    16. Fan Wu & Wei Bian, 2023. "Smoothing Accelerated Proximal Gradient Method with Fast Convergence Rate for Nonsmooth Convex Optimization Beyond Differentiability," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 539-572, May.
    17. S. Bonettini & M. Prato & S. Rebegoldi, 2018. "A block coordinate variable metric linesearch based proximal gradient method," Computational Optimization and Applications, Springer, vol. 71(1), pages 5-52, September.
    18. Peter Ochs & Jalal Fadili & Thomas Brox, 2019. "Non-smooth Non-convex Bregman Minimization: Unification and New Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 181(1), pages 244-278, April.
    19. Sjur Didrik Flåm, 2019. "Blocks of coordinates, stochastic programming, and markets," Computational Management Science, Springer, vol. 16(1), pages 3-16, February.
    20. David Degras, 2021. "Sparse group fused lasso for model segmentation: a hybrid approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 625-671, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:79:y:2021:i:3:d:10.1007_s10589-021-00284-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.