IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v74y2019i2d10.1007_s10589-019-00118-5.html
   My bibliography  Save this article

On the conditions for the finite termination of ADMM and its applications to SOS polynomials feasibility problems

Author

Listed:
  • Hikaru Komeiji

    (Tokyo Institute of Technology)

  • Sunyoung Kim

    (Ewha W. University)

  • Makoto Yamashita

    (Tokyo Institute of Technology)

Abstract

We study finite termination properties of the alternating direction method of multipliers (ADMM) method applied to semidefinite programs (SDPs) generated from sums of squares (SOS) feasibility problems. Expressing a polynomial as SOS of lower degree by formulating the problem as SDPs is a key problem in many fields, and ADMM is frequently used to efficiently solve the SDPs whose size grows very rapidly with the degree and number of variables of the polynomial. We present conditions for the ADMM method to converges to an optimal solution in finite iterations and prove its finite termination under the conditions. In addition, for the problem of representing a univariate trigonometric polynomial as an SOS, we also provide similar conditions for the finite termination of the ADMM at an optimal solution. Numerical results demonstrate the finite termination if the conditions are satisfied and the size of the strictly feasible region is not too small. The size is determined by solving an SDP whose optimal value indicates how much the variable matrix of the original SDP can be diagonally increased, without violating the constraints of the original SDP. The finite termination discussed in this paper is a distinctive property of ADMM, and cannot be observed when implementing the interior-point methods.

Suggested Citation

  • Hikaru Komeiji & Sunyoung Kim & Makoto Yamashita, 2019. "On the conditions for the finite termination of ADMM and its applications to SOS polynomials feasibility problems," Computational Optimization and Applications, Springer, vol. 74(2), pages 317-344, November.
  • Handle: RePEc:spr:coopap:v:74:y:2019:i:2:d:10.1007_s10589-019-00118-5
    DOI: 10.1007/s10589-019-00118-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-019-00118-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-019-00118-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Makoto Yamashita & Katsuki Fujisawa & Mituhiro Fukuda & Kazuhiro Kobayashi & Kazuhide Nakata & Maho Nakata, 2012. "Latest Developments in the SDPA Family for Solving Large-Scale SDPs," International Series in Operations Research & Management Science, in: Miguel F. Anjos & Jean B. Lasserre (ed.), Handbook on Semidefinite, Conic and Polynomial Optimization, chapter 0, pages 687-713, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Florian Jarre & Felix Lieder & Ya-Feng Liu & Cheng Lu, 2020. "Set-completely-positive representations and cuts for the max-cut polytope and the unit modulus lifting," Journal of Global Optimization, Springer, vol. 76(4), pages 913-932, April.
    2. Masaki Kimizuka & Sunyoung Kim & Makoto Yamashita, 2019. "Solving pooling problems with time discretization by LP and SOCP relaxations and rescheduling methods," Journal of Global Optimization, Springer, vol. 75(3), pages 631-654, November.
    3. Gicquel, C. & Lisser, A. & Minoux, M., 2014. "An evaluation of semidefinite programming based approaches for discrete lot-sizing problems," European Journal of Operational Research, Elsevier, vol. 237(2), pages 498-507.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:74:y:2019:i:2:d:10.1007_s10589-019-00118-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.