IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v57y2014i3p599-621.html
   My bibliography  Save this article

A derivative-free algorithm for linearly constrained optimization problems

Author

Listed:
  • E. Gumma
  • M. Hashim
  • M. Ali

Abstract

Based on the NEWUOA algorithm, a new derivative-free algorithm is developed, named LCOBYQA. The main aim of the algorithm is to find a minimizer $x^{*} \in\mathbb{R}^{n}$ of a non-linear function, whose derivatives are unavailable, subject to linear inequality constraints. The algorithm is based on the model of the given function constructed from a set of interpolation points. LCOBYQA is iterative, at each iteration it constructs a quadratic approximation (model) of the objective function that satisfies interpolation conditions, and leaves some freedom in the model. The remaining freedom is resolved by minimizing the Frobenius norm of the change to the second derivative matrix of the model. The model is then minimized by a trust-region subproblem using the conjugate gradient method for a new iterate. At times the new iterate is found from a model iteration, designed to improve the geometry of the interpolation points. Numerical results are presented which show that LCOBYQA works well and is very competing against available model-based derivative-free algorithms. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • E. Gumma & M. Hashim & M. Ali, 2014. "A derivative-free algorithm for linearly constrained optimization problems," Computational Optimization and Applications, Springer, vol. 57(3), pages 599-621, April.
  • Handle: RePEc:spr:coopap:v:57:y:2014:i:3:p:599-621
    DOI: 10.1007/s10589-013-9607-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-013-9607-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-013-9607-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Charles Audet & Andrew R. Conn & Sébastien Le Digabel & Mathilde Peyrega, 2018. "A progressive barrier derivative-free trust-region algorithm for constrained optimization," Computational Optimization and Applications, Springer, vol. 71(2), pages 307-329, November.
    2. Adriano Verdério & Elizabeth W. Karas & Lucas G. Pedroso & Katya Scheinberg, 2017. "On the construction of quadratic models for derivative-free trust-region algorithms," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(4), pages 501-527, December.
    3. Ubaldo M. García Palomares, 2023. "Convergence of derivative-free nonmonotone Direct Search Methods for unconstrained and box-constrained mixed-integer optimization," Computational Optimization and Applications, Springer, vol. 85(3), pages 821-856, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:57:y:2014:i:3:p:599-621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.