IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v55y2013i3p545-570.html
   My bibliography  Save this article

An empirical evaluation of walk-and-round heuristics for mixed integer linear programs

Author

Listed:
  • Kuo-Ling Huang
  • Sanjay Mehrotra

Abstract

Feasibility pump is a general purpose technique for finding feasible solutions of mixed integer programs. In this paper we report our computational experience on using geometric random walks and a random ray approach to provide good points for the feasibility pump. Computational results on MIPLIB2003 and COR@L test libraries show that the walk-and-round approach improves the upper bounds of a large number of test problems when compared to running the feasibility pump either at the optimal solution or the analytic center of the continuous relaxation. In our experiments the hit-and-run walk (a specific type of random walk strategy) started from near the analytic center is generally better than other random search approaches, when short walks are used. The performance may be improved by expanding the feasible region before walking. Although the upper bound produced in the geometric random walk approach are generally inferior than the best available upper bounds for the test problems, we managed to prove optimality of three test problems which were considered unsolved in the COR@L benchmark library (though the COR@L bounds available to us seem to be out of date). Copyright Springer Science+Business Media New York 2013

Suggested Citation

  • Kuo-Ling Huang & Sanjay Mehrotra, 2013. "An empirical evaluation of walk-and-round heuristics for mixed integer linear programs," Computational Optimization and Applications, Springer, vol. 55(3), pages 545-570, July.
  • Handle: RePEc:spr:coopap:v:55:y:2013:i:3:p:545-570
    DOI: 10.1007/s10589-013-9540-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-013-9540-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-013-9540-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert L. Smith, 1984. "Efficient Monte Carlo Procedures for Generating Points Uniformly Distributed over Bounded Regions," Operations Research, INFORMS, vol. 32(6), pages 1296-1308, December.
    2. Stephen Baumert & Archis Ghate & Seksan Kiatsupaibul & Yanfang Shen & Robert L. Smith & Zelda B. Zabinsky, 2009. "Discrete Hit-and-Run for Sampling Points from Arbitrary Distributions Over Subsets of Integer Hyperrectangles," Operations Research, INFORMS, vol. 57(3), pages 727-739, June.
    3. Edward Rothberg, 2007. "An Evolutionary Algorithm for Polishing Mixed Integer Programming Solutions," INFORMS Journal on Computing, INFORMS, vol. 19(4), pages 534-541, November.
    4. Andersen, E.D. & Gondzio, J. & Meszaros, C. & Xu, X., 1996. "Implementation of Interior Point Methods for Large Scale Linear Programming," Papers 96.3, Ecole des Hautes Etudes Commerciales, Universite de Geneve-.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sanjay Mehrotra & David Papp, 2013. "A cutting surface algorithm for semi-infinite convex programming with an application to moment robust optimization," Papers 1306.3437, arXiv.org, revised Aug 2014.
    2. Kuo-Ling Huang & Sanjay Mehrotra, 2015. "An empirical evaluation of a walk-relax-round heuristic for mixed integer convex programs," Computational Optimization and Applications, Springer, vol. 60(3), pages 559-585, April.
    3. Cyril Bachelard & Apostolos Chalkis & Vissarion Fisikopoulos & Elias Tsigaridas, 2024. "Randomized Control in Performance Analysis and Empirical Asset Pricing," Papers 2403.00009, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuo-Ling Huang & Sanjay Mehrotra, 2015. "An empirical evaluation of a walk-relax-round heuristic for mixed integer convex programs," Computational Optimization and Applications, Springer, vol. 60(3), pages 559-585, April.
    2. Luca Anzilli & Silvio Giove, 2020. "Multi-criteria and medical diagnosis for application to health insurance systems: a general approach through non-additive measures," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(2), pages 559-582, December.
    3. Corrente, Salvatore & Figueira, José Rui & Greco, Salvatore, 2014. "The SMAA-PROMETHEE method," European Journal of Operational Research, Elsevier, vol. 239(2), pages 514-522.
    4. Stephen Baumert & Archis Ghate & Seksan Kiatsupaibul & Yanfang Shen & Robert L. Smith & Zelda B. Zabinsky, 2009. "Discrete Hit-and-Run for Sampling Points from Arbitrary Distributions Over Subsets of Integer Hyperrectangles," Operations Research, INFORMS, vol. 57(3), pages 727-739, June.
    5. Illes, Tibor & Terlaky, Tamas, 2002. "Pivot versus interior point methods: Pros and cons," European Journal of Operational Research, Elsevier, vol. 140(2), pages 170-190, July.
    6. Maros, Istvan & Haroon Khaliq, Mohammad, 2002. "Advances in design and implementation of optimization software," European Journal of Operational Research, Elsevier, vol. 140(2), pages 322-337, July.
    7. Hazan, Aurélien, 2017. "Volume of the steady-state space of financial flows in a monetary stock-flow-consistent model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 589-602.
    8. Dimitris Bertsimas & Allison O'Hair, 2013. "Learning Preferences Under Noise and Loss Aversion: An Optimization Approach," Operations Research, INFORMS, vol. 61(5), pages 1190-1199, October.
    9. Terlaky, Tamas, 2001. "An easy way to teach interior-point methods," European Journal of Operational Research, Elsevier, vol. 130(1), pages 1-19, April.
    10. Corrente, Salvatore & Greco, Salvatore & Rezaei, Jafar, 2024. "Better decisions with less cognitive load: The Parsimonious BWM," Omega, Elsevier, vol. 126(C).
    11. Stojkovic, Nebojsa V. & Stanimirovic, Predrag S., 2001. "Two direct methods in linear programming," European Journal of Operational Research, Elsevier, vol. 131(2), pages 417-439, June.
    12. Filipe Rodrigues & Agostinho Agra & Lars Magnus Hvattum & Cristina Requejo, 2021. "Weighted proximity search," Journal of Heuristics, Springer, vol. 27(3), pages 459-496, June.
    13. Qi Fan & Jiaqiao Hu, 2018. "Surrogate-Based Promising Area Search for Lipschitz Continuous Simulation Optimization," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 677-693, November.
    14. Jacek Gondzio & Andreas Grothey, 2009. "Exploiting structure in parallel implementation of interior point methods for optimization," Computational Management Science, Springer, vol. 6(2), pages 135-160, May.
    15. Reuven Rubinstein, 2009. "The Gibbs Cloner for Combinatorial Optimization, Counting and Sampling," Methodology and Computing in Applied Probability, Springer, vol. 11(4), pages 491-549, December.
    16. Ricardo M. Lima & Ignacio E. Grossmann, 2017. "On the solution of nonconvex cardinality Boolean quadratic programming problems: a computational study," Computational Optimization and Applications, Springer, vol. 66(1), pages 1-37, January.
    17. Jing Voon Chen & Julia L. Higle & Michael Hintlian, 2018. "A systematic approach for examining the impact of calibration uncertainty in disease modeling," Computational Management Science, Springer, vol. 15(3), pages 541-561, October.
    18. Luis V. Montiel & J. Eric Bickel, 2014. "A Generalized Sampling Approach for Multilinear Utility Functions Given Partial Preference Information," Decision Analysis, INFORMS, vol. 11(3), pages 147-170, September.
    19. Kiatsupaibul, Seksan & J. Hayter, Anthony & Liu, Wei, 2017. "Rank constrained distribution and moment computations," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 229-242.
    20. Pavel Shcherbakov & Mingyue Ding & Ming Yuchi, 2021. "Random Sampling Many-Dimensional Sets Arising in Control," Mathematics, MDPI, vol. 9(5), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:55:y:2013:i:3:p:545-570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.