IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v39y2024i6d10.1007_s00180-023-01442-5.html
   My bibliography  Save this article

An effective method for identifying clusters of robot strengths

Author

Listed:
  • Jen-Chieh Teng

    (National Taiwan University)

  • Chin-Tsang Chiang

    (National Taiwan University)

  • Alvin Lim

    (Measured, Inc.
    Emory University)

Abstract

In the analysis of qualification stage data from FIRST Robotics Competition (FRC) championships, the ratio (1.67–1.68) of the number of observations (110–114 matches) to the number of parameters (66–68 robots) in each division has been found to be quite small for the most commonly used winning margin power rating (WMPR) model. This usually leads to imprecise estimates and inaccurate predictions in such three-on-three matches that FRC tournaments are composed of. With the recognition of a clustering feature in estimated robot strengths, a more flexible model with latent clusters of robots was proposed to alleviate overparameterization of the WMPR model. Since its structure can be regarded as a dimension reduction of the parameter space in the WMPR model, the identification of clusters of robot strengths is naturally transformed into a model selection problem. Instead of comparing a huge number of competing models $$(7.76\times 10^{67}$$ ( 7.76 × 10 67 to $$3.66\times 10^{70})$$ 3.66 × 10 70 ) , we develop an effective method to estimate the number of clusters, clusters of robots and robot strengths in the format of qualification stage data from the FRC championships. The new method consists of two parts: (i) a combination of hierarchical and non-hierarchical classifications to determine candidate models; and (ii) variant goodness-of-fit criteria to select optimal models. In contrast to existing hierarchical classification, each step of our proposed non-hierarchical classification is based on estimated robot strengths from a candidate model in the preceding non-hierarchical classification step. A great advantage of the proposed methodology is its ability to consider the possibility of reassigning robots to other clusters. To reduce overestimation of the number of clusters by the mean squared prediction error criteria, corresponding Bayesian information criteria are further established as alternatives for model selection. With a coherent assembly of these essential elements, a systematic procedure is presented to perform the estimation of parameters. In addition, we propose two indices to measure the nested relation between clusters from any two models and monotonic association between robot strengths from any two models. Data from the 2018 and 2019 FRC championships and a simulation study are also used to illustrate the applicability and superiority of our proposed methodology.

Suggested Citation

  • Jen-Chieh Teng & Chin-Tsang Chiang & Alvin Lim, 2024. "An effective method for identifying clusters of robot strengths," Computational Statistics, Springer, vol. 39(6), pages 3303-3345, September.
  • Handle: RePEc:spr:compst:v:39:y:2024:i:6:d:10.1007_s00180-023-01442-5
    DOI: 10.1007/s00180-023-01442-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-023-01442-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-023-01442-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin Chang-Ching & Ng Serena, 2012. "Estimation of Panel Data Models with Parameter Heterogeneity when Group Membership is Unknown," Journal of Econometric Methods, De Gruyter, vol. 1(1), pages 42-55, August.
    2. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    3. Wayne DeSarbo & William Cron, 1988. "A maximum likelihood methodology for clusterwise linear regression," Journal of Classification, Springer;The Classification Society, vol. 5(2), pages 249-282, September.
    4. Frederick Mosteller, 1951. "Remarks on the method of paired comparisons: I. The least squares solution assuming equal standard deviations and equal correlations," Psychometrika, Springer;The Psychometric Society, vol. 16(1), pages 3-9, March.
    5. Han, Aaron K., 1987. "Non-parametric analysis of a generalized regression model : The maximum rank correlation estimator," Journal of Econometrics, Elsevier, vol. 35(2-3), pages 303-316, July.
    6. Manuela Cattelan & Cristiano Varin & David Firth, 2013. "Dynamic Bradley–Terry modelling of sports tournaments," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(1), pages 135-150, January.
    7. Lim, Alejandro & Chiang, Chin-Tsang & Teng, Jen-Chieh, 2021. "Estimating robot strengths with application to selection of alliance members in FIRST robotics competitions," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    8. Howard D. Bondell & Brian J. Reich, 2008. "Simultaneous Regression Shrinkage, Variable Selection, and Supervised Clustering of Predictors with OSCAR," Biometrics, The International Biometric Society, vol. 64(1), pages 115-123, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Alejandro & Chiang, Chin-Tsang & Teng, Jen-Chieh, 2021. "Estimating robot strengths with application to selection of alliance members in FIRST robotics competitions," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    2. Ander Wilson & Brian J. Reich, 2014. "Confounder selection via penalized credible regions," Biometrics, The International Biometric Society, vol. 70(4), pages 852-861, December.
    3. Custodio João, Igor & Lucas, André & Schaumburg, Julia & Schwaab, Bernd, 2023. "Dynamic clustering of multivariate panel data," Journal of Econometrics, Elsevier, vol. 237(2).
    4. Tan, Xin Lu, 2019. "Optimal estimation of slope vector in high-dimensional linear transformation models," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 179-204.
    5. Cristiano Varin & Manuela Cattelan & David Firth, 2016. "Statistical modelling of citation exchange between statistics journals," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(1), pages 1-63, January.
    6. Yuanjia Wang & Huaihou Chen & Runze Li & Naihua Duan & Roberto Lewis-Fernández, 2011. "Prediction-Based Structured Variable Selection through the Receiver Operating Characteristic Curves," Biometrics, The International Biometric Society, vol. 67(3), pages 896-905, September.
    7. Atefeh Zarei & Zahra Khodadadi & Mohsen Maleki & Karim Zare, 2023. "Robust mixture regression modeling based on two-piece scale mixtures of normal distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 181-210, March.
    8. Ando, Tomohiro & Bai, Jushan, 2021. "Large-scale generalized linear longitudinal data models with grouped patterns of unobserved heterogeneity," MPRA Paper 111431, University Library of Munich, Germany.
    9. Okui, Ryo & Wang, Wendun, 2021. "Heterogeneous structural breaks in panel data models," Journal of Econometrics, Elsevier, vol. 220(2), pages 447-473.
    10. Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
    11. Justin B. Post & Howard D. Bondell, 2013. "Factor Selection and Structural Identification in the Interaction ANOVA Model," Biometrics, The International Biometric Society, vol. 69(1), pages 70-79, March.
    12. Jeon, Jong-June & Kwon, Sunghoon & Choi, Hosik, 2017. "Homogeneity detection for the high-dimensional generalized linear model," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 61-74.
    13. Mihee Lee & Haipeng Shen & Jianhua Z. Huang & J. S. Marron, 2010. "Biclustering via Sparse Singular Value Decomposition," Biometrics, The International Biometric Society, vol. 66(4), pages 1087-1095, December.
    14. Jiang, Liewen & Bondell, Howard D. & Wang, Huixia Judy, 2014. "Interquantile shrinkage and variable selection in quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 208-219.
    15. Zhang, Yingying & Wang, Huixia Judy & Zhu, Zhongyi, 2019. "Quantile-regression-based clustering for panel data," Journal of Econometrics, Elsevier, vol. 213(1), pages 54-67.
    16. Philip Kostov & Thankom Arun & Samuel Annim, 2014. "Financial Services to the Unbanked: the case of the Mzansi intervention in South Africa," Contemporary Economics, University of Economics and Human Sciences in Warsaw., vol. 8(2), June.
    17. Mehrabani, Ali, 2023. "Estimation and identification of latent group structures in panel data," Journal of Econometrics, Elsevier, vol. 235(2), pages 1464-1482.
    18. Hou, Zhaohan & Wang, Lei, 2024. "Heterogeneous quantile regression for longitudinal data with subgroup structures," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
    19. Lin, Huazhen & Peng, Heng, 2013. "Smoothed rank correlation of the linear transformation regression model," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 615-630.
    20. Jacquemain, Alexandre & Heuchenne, Cédric & Pircalabelu, Eugen, 2024. "A penalised bootstrap estimation procedure for the explained Gini coefficient," LIDAM Discussion Papers ISBA 2024005, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:39:y:2024:i:6:d:10.1007_s00180-023-01442-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.