IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v37y2022i4d10.1007_s00180-021-01188-y.html
   My bibliography  Save this article

Shapiro-Wilk test for multivariate skew-normality

Author

Listed:
  • Elizabeth González-Estrada

    (Colegio de Postgraduados)

  • José A. Villaseñor

    (Colegio de Postgraduados)

  • Rocío Acosta-Pech

    (Colegio de Postgraduados)

Abstract

The multivariate skew-normal family of distributions is a flexible class of probability models that includes the multivariate normal distribution as a special case. Two procedures for testing that a multivariate random sample comes from the multivariate skew-normal distribution are proposed here based on the estimated canonical form. Canonical data are transformed into approximately multivariate normal observations and then a multivariate version of the Shapiro-Wilk test is used for testing multivariate normality. Critical values for the tests are approximated without using parametric bootstrap. Monte Carlo simulation results provide evidence that the nominal test level is preserved, in general, under the considered settings. The simulation results also indicate that these tests are in general more powerful than existing tests for the same problem versus the studied alternatives.

Suggested Citation

  • Elizabeth González-Estrada & José A. Villaseñor & Rocío Acosta-Pech, 2022. "Shapiro-Wilk test for multivariate skew-normality," Computational Statistics, Springer, vol. 37(4), pages 1985-2001, September.
  • Handle: RePEc:spr:compst:v:37:y:2022:i:4:d:10.1007_s00180-021-01188-y
    DOI: 10.1007/s00180-021-01188-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-021-01188-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-021-01188-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Balakrishnan, N. & Capitanio, A. & Scarpa, B., 2014. "A test for multivariate skew-normality based on its canonical form," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 19-32.
    2. Jiménez-Gamero, M. Dolores & Kim, Hyoung-Moon, 2015. "Fast goodness-of-fit tests based on the characteristic function," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 172-191.
    3. A. Azzalini & A. Capitanio, 1999. "Statistical applications of the multivariate skew normal distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 579-602.
    4. Simos G. Meintanis & Zdeněk Hlávka, 2010. "Goodness‐of‐Fit Tests for Bivariate and Multivariate Skew‐Normal Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(4), pages 701-714, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Chuancun & Balakrishnan, Narayanaswamy, 2024. "Stochastic representations and probabilistic characteristics of multivariate skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    2. Jorge M. Arevalillo & Hilario Navarro, 2019. "A stochastic ordering based on the canonical transformation of skew-normal vectors," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 475-498, June.
    3. Jorge M. Arevalillo & Hilario Navarro, 2021. "Skewness-Kurtosis Model-Based Projection Pursuit with Application to Summarizing Gene Expression Data," Mathematics, MDPI, vol. 9(9), pages 1-18, April.
    4. Baishuai Zuo & Narayanaswamy Balakrishnan & Chuancun Yin, 2023. "An analysis of multivariate measures of skewness and kurtosis of skew-elliptical distributions," Papers 2311.18176, arXiv.org.
    5. Bhat, Chandra R. & Astroza, Sebastian & Hamdi, Amin S., 2017. "A spatial generalized ordered-response model with skew normal kernel error terms with an application to bicycling frequency," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 126-148.
    6. Jorge M. Arevalillo & Hilario Navarro, 2020. "Data projections by skewness maximization under scale mixtures of skew-normal vectors," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 435-461, June.
    7. Balakrishnan, N. & Capitanio, A. & Scarpa, B., 2014. "A test for multivariate skew-normality based on its canonical form," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 19-32.
    8. Hashemi, Farzane & Naderi, Mehrdad & Jamalizadeh, Ahad & Bekker, Andriette, 2021. "A flexible factor analysis based on the class of mean-mixture of normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    9. Padilla, Juan L. & Azevedo, Caio L.N. & Lachos, Victor H., 2018. "Multidimensional multiple group IRT models with skew normal latent trait distributions," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 250-268.
    10. Jiménez-Gamero, M.D. & Alba-Fernández, M.V. & Jodrá, P. & Barranco-Chamorro, I., 2017. "Fast tests for the two-sample problem based on the empirical characteristic function," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 137(C), pages 390-410.
    11. Marco Minozzo & Luca Bagnato, 2021. "A unified skew‐normal geostatistical factor model," Environmetrics, John Wiley & Sons, Ltd., vol. 32(4), June.
    12. Bernardi, Mauro, 2013. "Risk measures for skew normal mixtures," Statistics & Probability Letters, Elsevier, vol. 83(8), pages 1819-1824.
    13. Panagiotelis, Anastasios & Smith, Michael, 2010. "Bayesian skew selection for multivariate models," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1824-1839, July.
    14. Katherine Elizabeth Castellano & Andrew Dean Ho, 2013. "Contrasting OLS and Quantile Regression Approaches to Student “Growth†Percentiles," Journal of Educational and Behavioral Statistics, , vol. 38(2), pages 190-215, April.
    15. repec:wrk:wrkemf:27 is not listed on IDEAS
    16. Reinaldo B. Arellano-Valle & Marc G. Genton, 2010. "Multivariate extended skew-t distributions and related families," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 201-234.
    17. J. T. A. S. Ferreira & M. F. J. Steel, 2004. "On Describing Multivariate Skewness: A Directional Approach," Econometrics 0409010, University Library of Munich, Germany.
    18. Lachos, Victor H. & Prates, Marcos O. & Dey, Dipak K., 2021. "Heckman selection-t model: Parameter estimation via the EM-algorithm," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    19. Anna Gottard & Simona Pacillo, 2007. "On the impact of contaminations in graphical Gaussian models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 343-354, February.
    20. M. Teimourian & T. Baghfalaki & M. Ganjali & D. Berridge, 2015. "Joint modeling of mixed skewed continuous and ordinal longitudinal responses: a Bayesian approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(10), pages 2233-2256, October.
    21. Fang, B.Q., 2006. "Sample mean, covariance and T2 statistic of the skew elliptical model," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1675-1690, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:37:y:2022:i:4:d:10.1007_s00180-021-01188-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.