IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v22y2006i3p225-242.html
   My bibliography  Save this article

Bayesian analysis of mixture of autoregressive components with an application to financial market volatility

Author

Listed:
  • Stefano Sampietro

Abstract

In this paper, we present a fully Bayesian analysis of a finite mixture of autoregressive components. Neither the number of mixture components nor the autoregressive order of each component have to be fixed, since we treat them as stochastic variables. Parameter estimation and model selection are performed using Markov chain Monte Carlo methods. This analysis allows us to take into account the stationarity conditions on the model parameters, which are often ignored by Bayesian approaches. Finally, the application to return volatility of financial markets will be illustrated. Our model seems to be consistent with some empirical facts concerning volatility such as persistence, clustering effects, nonsymmetrical dependencies. Copyright © 2006 John Wiley & Sons, Ltd.

Suggested Citation

  • Stefano Sampietro, 2006. "Bayesian analysis of mixture of autoregressive components with an application to financial market volatility," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 22(3), pages 225-242, May.
  • Handle: RePEc:wly:apsmbi:v:22:y:2006:i:3:p:225-242
    DOI: 10.1002/asmb.613
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.613
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.613?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Davide Ravagli & Georgi N. Boshnakov, 2022. "Bayesian analysis of mixture autoregressive models covering the complete parameter space," Computational Statistics, Springer, vol. 37(3), pages 1399-1433, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:22:y:2006:i:3:p:225-242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.