IDEAS home Printed from https://ideas.repec.org/p/vic/vicewp/1105.html
   My bibliography  Save this paper

Bias - Corrected Maximum Likelihood Estimation of the Parameters of the Generalized Pareto Distribution

Author

Abstract

We derive analytic expressions for the biases, to O(n-1), of the maximum likelihood estimators of the parameters of the generalized Pareto distribution. Using these expressions to bias-correct the estimators is found to be extremely effective in terms of bias reduction, and can also result in a small reduction in relative mean squared error. In terms of remaining relative bias, the analytic bias-corrected estimators are somewhat less effective than their counterparts obtained by using a parametric bootstrap bias correction. However, the analytic correction out-performs the bootstrap correction in terms of remaining %MSE. Taking into account the relative computational costs, this leads us to recommend the use of the analytic bias adjustment for most practical situations.

Suggested Citation

  • David E. Giles & Hui Feng & Ryan T. Godwin, 2011. "Bias - Corrected Maximum Likelihood Estimation of the Parameters of the Generalized Pareto Distribution," Econometrics Working Papers 1105, Department of Economics, University of Victoria.
  • Handle: RePEc:vic:vicewp:1105
    Note: ISSN 1485-6441
    as

    Download full text from publisher

    File URL: https://www.uvic.ca/socialsciences/economics/_assets/docs/econometrics/ewp1105.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Feng Ren & David E. Giles, 2007. "Extreme Value Analysis of Daily Canadian Crude Oil Prices," Econometrics Working Papers 0708, Department of Economics, University of Victoria.
    Full references (including those not matched with items on IDEAS)

    Citations

    Blog mentions

    As found by EconAcademics.org, the blog aggregator for Economics research:
    1. N.Z. Econometrics Study Group
      by Dave Giles in Econometrics Beat: Dave Giles' Blog on 2013-02-06 09:09:00
    2. What I Learned Last Week
      by Dave Giles in Econometrics Beat: Dave Giles' Blog on 2012-10-13 09:19:00
    3. Bias-Corrected MLEs
      by Dave Giles in Econometrics Beat: Dave Giles' Blog on 2012-05-01 21:03:00
    4. Extremes, the Generalized Pareto Distribution, and MLE
      by Dave Giles in Econometrics Beat: Dave Giles' Blog on 2012-04-20 03:03:00

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David E. Giles, 2012. "A Note on Improved Estimation for the Topp-Leone Distribution," Econometrics Working Papers 1203, Department of Economics, University of Victoria.
    2. Wolfgang Kössler & Janine Ott, 2019. "Two-sided variable inspection plans for arbitrary continuous populations with unknown distribution," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(3), pages 437-452, September.
    3. David E. Giles & Hui Feng, 2009. "Bias of the Maximum Likelihood Estimators of the Two-Parameter Gamma Distribution Revisited," Econometrics Working Papers 0908, Department of Economics, University of Victoria.
    4. David E. Giles, 2021. "Improved Maximum Likelihood Estimation for the Weibull Distribution Under Length-Biased Sampling," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 59-77, December.
    5. Joseph Reath & Jianping Dong & Min Wang, 2018. "Improved parameter estimation of the log-logistic distribution with applications," Computational Statistics, Springer, vol. 33(1), pages 339-356, March.
    6. El-Sherpieny, El-Sayed A. & Almetwally, Ehab M. & Muhammed, Hiba Z., 2020. "Progressive Type-II hybrid censored schemes based on maximum product spacing with application to Power Lomax distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    7. Ryan T. Godwin & David E. Giles, 2017. "Analytic Bias Correction for Maximum Likelihood Estimators When the Bias Function is Non-Constant," Econometrics Working Papers 1702, Department of Economics, University of Victoria.
    8. Hideki Nagatsuka & N. Balakrishnan, 2021. "Efficient likelihood-based inference for the generalized Pareto distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(6), pages 1153-1185, December.
    9. Mahdi Teimouri, 2022. "bccp: an R package for life-testing and survival analysis," Computational Statistics, Springer, vol. 37(1), pages 469-489, March.
    10. Marc N. Conte & David L. Kelly, 2016. "An Imperfect Storm: Fat-Tailed Hurricane Damages, Insurance and Climate Policy," Working Papers 2016-01, University of Miami, Department of Economics.
    11. Conte, Marc N. & Kelly, David L., 2018. "An imperfect storm: Fat-tailed tropical cyclone damages, insurance, and climate policy," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 677-706.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ra l De Jes s Guti rrez & Lidia E. Carvajal Guti rrez & Oswaldo Garcia Salgado, 2023. "Value at Risk and Expected Shortfall Estimation for Mexico s Isthmus Crude Oil Using Long-Memory GARCH-EVT Combined Approaches," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 467-480, July.
    2. David E. Giles & Qinlu Chen, 2014. "Risk Analysis for Three Precious Metals: An Application of Extreme Value Theory," Econometrics Working Papers 1402, Department of Economics, University of Victoria.
    3. Karmakar, Madhusudan & Shukla, Girja K., 2015. "Managing extreme risk in some major stock markets: An extreme value approach," International Review of Economics & Finance, Elsevier, vol. 35(C), pages 1-25.
    4. Miguel Carvalho & António Rua, 2014. "Extremal Dependence in International Output Growth: Tales from the Tails," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(4), pages 605-620, August.
    5. Halkos, George E. & Tsirivis, Apostolos S., 2019. "Value-at-risk methodologies for effective energy portfolio risk management," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 197-212.
    6. Herrera, Rodrigo, 2013. "Energy risk management through self-exciting marked point process," Energy Economics, Elsevier, vol. 38(C), pages 64-76.
    7. Knowledge Chinhamu & Chun-Kai Huang & Chun-Sung Huang & Jahvaid Hammujuddy, 2015. "Empirical Analyses of Extreme Value Models for the South African Mining Index," South African Journal of Economics, Economic Society of South Africa, vol. 83(1), pages 41-55, March.
    8. Abdul-Aziz Ibn Musah & Jianguo Du & Hira Salah Ud din Khan & Alhassan Alolo Abdul-Rasheed Akeji, 2018. "The Asymptotic Decision Scenarios of an Emerging Stock Exchange Market: Extreme Value Theory and Artificial Neural Network," Risks, MDPI, vol. 6(4), pages 1-24, November.
    9. Wei Yang & Ai Han & Yongmiao Hong & Shouyang Wang, 2016. "Analysis of crisis impact on crude oil prices: a new approach with interval time series modelling," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1917-1928, December.
    10. He, Angela W.W. & Kwok, Jerry T.K. & Wan, Alan T.K., 2010. "An empirical model of daily highs and lows of West Texas Intermediate crude oil prices," Energy Economics, Elsevier, vol. 32(6), pages 1499-1506, November.
    11. Halkos, George & Tsirivis, Apostolos, 2019. "Using Value-at-Risk for effective energy portfolio risk management," MPRA Paper 91674, University Library of Munich, Germany.

    More about this item

    Keywords

    Bias reduction; Extreme values; Generalized Pareto distribution; Peaks over threshold; Parametric bootstrap;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C16 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Econometric and Statistical Methods; Specific Distributions
    • C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vic:vicewp:1105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kali Moon (email available below). General contact details of provider: https://edirc.repec.org/data/devicca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.