IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v33y2018i1d10.1007_s00180-017-0724-4.html
   My bibliography  Save this article

A peeling algorithm for multiple testing on a random field

Author

Listed:
  • Joungyoun Kim

    (Chungbuk National University)

  • Donghyeon Yu

    (Inha University)

  • Johan Lim

    (Seoul National University)

  • Joong-Ho Won

    (Seoul National University)

Abstract

The optimal decision rule for testing hypothesis using observations or statistics on a two-dimensional lattice system is theoretically well-understood since Sun and Cai (J R Stat Soc Ser B (Stat Methodol) 71(2):393–424, 2009). However, its practical use still faces several difficulties that include the computation of the local index of significance (LIS). In this paper, we propose a peeling algorithm to compute the LIS, or equivalently the marginal posterior probability for the indicator of the true hypothesis for each site. We show that the proposed peeling algorithm has several advantages over the popular Markov chain Monte Carlo methods through an extensive numerical study. An application of the peeling algorithm to finding active voxels in a task-based fMRI experiment is also presented.

Suggested Citation

  • Joungyoun Kim & Donghyeon Yu & Johan Lim & Joong-Ho Won, 2018. "A peeling algorithm for multiple testing on a random field," Computational Statistics, Springer, vol. 33(1), pages 503-525, March.
  • Handle: RePEc:spr:compst:v:33:y:2018:i:1:d:10.1007_s00180-017-0724-4
    DOI: 10.1007/s00180-017-0724-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-017-0724-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-017-0724-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Wenguang & Cai, T. Tony, 2007. "Oracle and Adaptive Compound Decision Rules for False Discovery Rate Control," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 901-912, September.
    2. Won, Joong-Ho & Lim, Johan & Yu, Donghyeon & Kim, Byung Soo & Kim, Kyunga, 2014. "Monotone false discovery rate," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 86-93.
    3. Wenguang Sun & T. Tony Cai, 2009. "Large‐scale multiple testing under dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 393-424, April.
    4. Hongyuan Cao & Wenguang Sun & Michael R. Kosorok, 2013. "The optimal power puzzle: scrutiny of the monotone likelihood ratio assumption in multiple testing," Biometrika, Biometrika Trust, vol. 100(2), pages 495-502.
    5. Hai Shu & Bin Nan & Robert Koeppe, 2015. "Multiple testing for neuroimaging via hidden Markov random field," Biometrics, The International Biometric Society, vol. 71(3), pages 741-750, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhigen Zhao, 2022. "Where to find needles in a haystack?," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 148-174, March.
    2. Tingting Cui & Pengfei Wang & Wensheng Zhu, 2021. "Covariate-adjusted multiple testing in genome-wide association studies via factorial hidden Markov models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 737-757, September.
    3. Ghosh Debashis, 2012. "Incorporating the Empirical Null Hypothesis into the Benjamini-Hochberg Procedure," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(4), pages 1-21, July.
    4. Ruth Heller & Saharon Rosset, 2021. "Optimal control of false discovery criteria in the two‐group model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(1), pages 133-155, February.
    5. Noirrit Kiran Chandra & Sourabh Bhattacharya, 2021. "Asymptotic theory of dependent Bayesian multiple testing procedures under possible model misspecification," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 891-920, October.
    6. Izmirlian, Grant, 2020. "Strong consistency and asymptotic normality for quantities related to the Benjamini–Hochberg false discovery rate procedure," Statistics & Probability Letters, Elsevier, vol. 160(C).
    7. Lee, Donghwan & Lee, Youngjo, 2016. "Extended likelihood approach to multiple testing with directional error control under a hidden Markov random field model," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 1-13.
    8. Jiaying Gu & Roger Koenker, 2020. "Invidious Comparisons: Ranking and Selection as Compound Decisions," Papers 2012.12550, arXiv.org, revised Sep 2021.
    9. Wang, Jiangzhou & Cui, Tingting & Zhu, Wensheng & Wang, Pengfei, 2023. "Covariate-modulated large-scale multiple testing under dependence," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    10. Hai Shu & Bin Nan & Robert Koeppe, 2015. "Multiple testing for neuroimaging via hidden Markov random field," Biometrics, The International Biometric Society, vol. 71(3), pages 741-750, September.
    11. Nikolaos Ignatiadis & Wolfgang Huber, 2021. "Covariate powered cross‐weighted multiple testing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 720-751, September.
    12. Pengfei Wang & Wensheng Zhu, 2022. "Large‐scale covariate‐assisted two‐sample inference under dependence," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1421-1447, December.
    13. T. Tony Cai & Wenguang Sun & Weinan Wang, 2019. "Covariate‐assisted ranking and screening for large‐scale two‐sample inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 187-234, April.
    14. T. Tony Cai & Weidong Liu, 2016. "Large-Scale Multiple Testing of Correlations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 229-240, March.
    15. Jiaying Gu & Roger Koenker, 2016. "On a Problem of Robbins," International Statistical Review, International Statistical Institute, vol. 84(2), pages 224-244, August.
    16. Jiaying Gu & Roger Koenker, 2023. "Invidious Comparisons: Ranking and Selection as Compound Decisions," Econometrica, Econometric Society, vol. 91(1), pages 1-41, January.
    17. Jessie Jeng, X., 2016. "Detecting weak signals in high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 234-246.
    18. Pallavi Basu & Luella Fu & Alessio Saretto & Wenguang Sun, 2021. "Empirical Bayes Control of the False Discovery Exceedance," Working Papers 2115, Federal Reserve Bank of Dallas.
    19. He, Li & Sarkar, Sanat K. & Zhao, Zhigen, 2015. "Capturing the severity of type II errors in high-dimensional multiple testing," Journal of Multivariate Analysis, Elsevier, vol. 142(C), pages 106-116.
    20. Wang, Xia & Shojaie, Ali & Zou, Jian, 2019. "Bayesian hidden Markov models for dependent large-scale multiple testing," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 123-136.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:33:y:2018:i:1:d:10.1007_s00180-017-0724-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.