IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v147y2016icp234-246.html
   My bibliography  Save this article

Detecting weak signals in high dimensions

Author

Listed:
  • Jessie Jeng, X.

Abstract

Fast emerging high-throughput technology advances scientific applications into a new era by enabling detection of information-bearing signals with unprecedented sizes. Despite its potential, the analysis of ultrahigh-dimensional data involves fundamental challenges, wherein the deluge of a large amount of irrelevant data can easily obscure the true signals. Classical statistical methods for low to moderate-dimensional data focus on identifying strong true signals using false positive control criteria. These methods, however, have limited power for identifying weak true signals embedded in an extremely large amount of noise. This paper seeks to facilitate the detection of weak signals by introducing a new approach based on false negative instead of false positive control. As a result, a high proportion of weak signals can be retained for follow-up study. The new procedure is completely data-driven and fast in computation. We show in theory its efficiency and adaptivity to the unknown features of the data including signal intensity and sparsity. Simulation studies further evaluate the method under various model settings. We apply the new method in a real-data analysis on detecting genomic variants with varying signal intensities.

Suggested Citation

  • Jessie Jeng, X., 2016. "Detecting weak signals in high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 234-246.
  • Handle: RePEc:eee:jmvana:v:147:y:2016:i:c:p:234-246
    DOI: 10.1016/j.jmva.2016.02.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X16000257
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2016.02.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Buhm Han & Hyun Min Kang & Eleazar Eskin, 2009. "Rapid and Accurate Multiple Testing Correction and Power Estimation for Millions of Correlated Markers," PLOS Genetics, Public Library of Science, vol. 5(4), pages 1-13, April.
    2. Jiashun Jin, 2008. "Proportion of non‐zero normal means: universal oracle equivalences and uniformly consistent estimators," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(3), pages 461-493, July.
    3. Jichun Xie & T. Tony Cai & Hongzhe Li, 2011. "Sample size and power analysis for sparse signal recovery in genome-wide association studies," Biometrika, Biometrika Trust, vol. 98(2), pages 273-290.
    4. Jeng, X. Jessie & Cai, T. Tony & Li, Hongzhe, 2010. "Optimal Sparse Segment Identification With Application in Copy Number Variation Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1156-1166.
    5. Nicolai Meinshausen & Peter Bühlmann, 2010. "Stability selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 417-473, September.
    6. Sun, Wenguang & Cai, T. Tony, 2007. "Oracle and Adaptive Compound Decision Rules for False Discovery Rate Control," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 901-912, September.
    7. Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
    8. Friguet, Chloé & Kloareg, Maela & Causeur, David, 2009. "A Factor Model Approach to Multiple Testing Under Dependence," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1406-1415.
    9. Yingying Fan & Cheng Yong Tang, 2013. "Tuning parameter selection in high dimensional penalized likelihood," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 531-552, June.
    10. Wenguang Sun & T. Tony Cai, 2009. "Large‐scale multiple testing under dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 393-424, April.
    11. Jin, Jiashun & Cai, T. Tony, 2007. "Estimating the Null and the Proportion of Nonnull Effects in Large-Scale Multiple Comparisons," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 495-506, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. Tony Cai & Wenguang Sun, 2017. "Optimal screening and discovery of sparse signals with applications to multistage high throughput studies," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 197-223, January.
    2. Cipolli III, William & Hanson, Timothy & McLain, Alexander C., 2016. "Bayesian nonparametric multiple testing," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 64-79.
    3. Ruth Heller & Saharon Rosset, 2021. "Optimal control of false discovery criteria in the two‐group model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(1), pages 133-155, February.
    4. Chang Yu & Daniel Zelterman, 2020. "Distributions associated with simultaneous multiple hypothesis testing," Journal of Statistical Distributions and Applications, Springer, vol. 7(1), pages 1-17, December.
    5. Helmut Finner & Veronika Gontscharuk, 2009. "Controlling the familywise error rate with plug‐in estimator for the proportion of true null hypotheses," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 1031-1048, November.
    6. Haibing Zhao & Xinping Cui, 2020. "Constructing confidence intervals for selected parameters," Biometrics, The International Biometric Society, vol. 76(4), pages 1098-1108, December.
    7. Li Wang, 2019. "Weighted multiple testing procedure for grouped hypotheses with k-FWER control," Computational Statistics, Springer, vol. 34(2), pages 885-909, June.
    8. Jianqing Fan & Xu Han, 2017. "Estimation of the false discovery proportion with unknown dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1143-1164, September.
    9. Ghosh Debashis, 2012. "Incorporating the Empirical Null Hypothesis into the Benjamini-Hochberg Procedure," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(4), pages 1-21, July.
    10. Long Qu & Dan Nettleton & Jack C. M. Dekkers, 2012. "Improved Estimation of the Noncentrality Parameter Distribution from a Large Number of t-Statistics, with Applications to False Discovery Rate Estimation in Microarray Data Analysis," Biometrics, The International Biometric Society, vol. 68(4), pages 1178-1187, December.
    11. Kock, Anders Bredahl, 2016. "Oracle inequalities, variable selection and uniform inference in high-dimensional correlated random effects panel data models," Journal of Econometrics, Elsevier, vol. 195(1), pages 71-85.
    12. Lee, Donghwan & Lee, Youngjo, 2016. "Extended likelihood approach to multiple testing with directional error control under a hidden Markov random field model," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 1-13.
    13. Paweł Teisseyre & Robert A. Kłopotek & Jan Mielniczuk, 2016. "Random Subspace Method for high-dimensional regression with the R package regRSM," Computational Statistics, Springer, vol. 31(3), pages 943-972, September.
    14. Latouche, Pierre & Mattei, Pierre-Alexandre & Bouveyron, Charles & Chiquet, Julien, 2016. "Combining a relaxed EM algorithm with Occam’s razor for Bayesian variable selection in high-dimensional regression," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 177-190.
    15. Hai Shu & Bin Nan & Robert Koeppe, 2015. "Multiple testing for neuroimaging via hidden Markov random field," Biometrics, The International Biometric Society, vol. 71(3), pages 741-750, September.
    16. Vandin, Andrea & Giachini, Daniele & Lamperti, Francesco & Chiaromonte, Francesca, 2022. "Automated and distributed statistical analysis of economic agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    17. Mathur, Maya B & VanderWeele, Tyler, 2018. "Statistical methods for evidence synthesis," Thesis Commons kd6ja, Center for Open Science.
    18. T. Tony Cai & Wenguang Sun & Weinan Wang, 2019. "Covariate‐assisted ranking and screening for large‐scale two‐sample inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 187-234, April.
    19. Joungyoun Kim & Donghyeon Yu & Johan Lim & Joong-Ho Won, 2018. "A peeling algorithm for multiple testing on a random field," Computational Statistics, Springer, vol. 33(1), pages 503-525, March.
    20. T. Tony Cai & Weidong Liu, 2016. "Large-Scale Multiple Testing of Correlations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 229-240, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:147:y:2016:i:c:p:234-246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.