IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v32y2017i4d10.1007_s00180-016-0706-y.html
   My bibliography  Save this article

Multivariate moment based extreme value index estimators

Author

Listed:
  • Matias Heikkilä

    (Aalto University School of Science)

  • Yves Dominicy

    (Université libre de Bruxelles)

  • Pauliina Ilmonen

    (Aalto University School of Science)

Abstract

Modeling extreme events is of paramount importance in various areas of science—biostatistics, climatology, finance, geology, and telecommunications, to name a few. Most of these application areas involve multivariate data. Estimation of the extreme value index plays a crucial role in modeling rare events. There is an affine invariant multivariate generalization of the well known Hill estimator—the separating Hill estimator. However, the Hill estimator is only suitable for heavy tailed distributions. As in the case of the separating multivariate Hill estimator, we consider estimation of the extreme value index under the assumptions of multivariate ellipticity and independent identically distributed observations. We provide affine invariant multivariate generalizations of the moment estimator and the mixed moment estimator. These estimators are suitable for both light and heavy tailed distributions. Asymptotic properties of the new extreme value index estimators are derived under multivariate elliptical distribution with known location and scatter. The effect of replacing true location and scatter by estimates is examined in a thorough simulation study. We also consider two data examples: one financial application and one meteorological application.

Suggested Citation

  • Matias Heikkilä & Yves Dominicy & Pauliina Ilmonen, 2017. "Multivariate moment based extreme value index estimators," Computational Statistics, Springer, vol. 32(4), pages 1481-1513, December.
  • Handle: RePEc:spr:compst:v:32:y:2017:i:4:d:10.1007_s00180-016-0706-y
    DOI: 10.1007/s00180-016-0706-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-016-0706-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-016-0706-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yves Dominicy & Hiroaki Ogata & David Veredas, 2013. "Inference for vast dimensional elliptical distributions," Computational Statistics, Springer, vol. 28(4), pages 1853-1880, August.
    2. Einmahl, J. H.J. & Dekkers, A. L.M. & de Haan, L., 1989. "A moment estimator for the index of an extreme-value distribution," Other publications TiSEM 81970cb3-5b7a-4cad-9bf6-2, Tilburg University, School of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barunik, Jozef & Vacha, Lukas, 2010. "Monte Carlo-based tail exponent estimator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4863-4874.
    2. Fátima Brilhante, M. & Ivette Gomes, M. & Pestana, Dinis, 2013. "A simple generalisation of the Hill estimator," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 518-535.
    3. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    4. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    5. Ivanilda Cabral & Frederico Caeiro & M. Ivette Gomes, 2022. "On the comparison of several classical estimators of the extreme value index," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 51(1), pages 179-196, January.
    6. Paola Stolfi & Mauro Bernardi & Lea Petrella, 2016. "Multivariate Method Of Simulated Quantiles," Departmental Working Papers of Economics - University 'Roma Tre' 0212, Department of Economics - University Roma Tre.
    7. He, Xue-Zhong & Li, Youwei, 2015. "Testing of a market fraction model and power-law behaviour in the DAX 30," Journal of Empirical Finance, Elsevier, vol. 31(C), pages 1-17.
    8. Allen, Michael R. & Datta, Somnath, 1999. "Estimation of the index parameter for autoregressive data using the estimated innovations," Statistics & Probability Letters, Elsevier, vol. 41(3), pages 315-324, February.
    9. Phornchanok Cumperayot & Casper G. de Vries, 2006. "Large Swings in Currencies driven by Fundamentals," Tinbergen Institute Discussion Papers 06-086/2, Tinbergen Institute.
    10. Virta, Joni & Lietzén, Niko & Viitasaari, Lauri & Ilmonen, Pauliina, 2024. "Latent model extreme value index estimation," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    11. Christian Schluter, 2021. "On Zipf’s law and the bias of Zipf regressions," Empirical Economics, Springer, vol. 61(2), pages 529-548, August.
    12. Gomes, M. Ivette & Neves, Cláudia, 2008. "Asymptotic comparison of the mixed moment and classical extreme value index estimators," Statistics & Probability Letters, Elsevier, vol. 78(6), pages 643-653, April.
    13. Einmahl, J.H.J. & de Haan, L.F.M. & Krajina, A., 2009. "Estimating Extreme Bivariate Quantile Regions," Other publications TiSEM 007ce0a9-dd94-4301-ad62-1, Tilburg University, School of Economics and Management.
    14. Estate Khmaladze & Wolfgang Weil, 2008. "Local empirical processes near boundaries of convex bodies," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(4), pages 813-842, December.
    15. Igor Fedotenkov, 2014. "A note on the bootstrap method for testing the existence of finite moments," Statistica, Department of Statistics, University of Bologna, vol. 74(4), pages 447-453.
    16. Li, Zhouping & Gong, Yun & Peng, Liang, 2010. "Empirical likelihood method for intermediate quantiles," Statistics & Probability Letters, Elsevier, vol. 80(11-12), pages 1022-1029, June.
    17. Yi He & John H. J. Einmahl, 2017. "Estimation of extreme depth-based quantile regions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 449-461, March.
    18. Ana Ferreira & Casper G. de Vries, 2004. "Optimal Confidence Intervals for the Tail Index and High Quantiles," Tinbergen Institute Discussion Papers 04-090/2, Tinbergen Institute.
    19. Lorenzo Ricci & David Veredas, 2012. "TailCoR," Working Papers 1227, Banco de España.
      • Sla{dj}ana Babi'c & Christophe Ley & Lorenzo Ricci & David Veredas, 2020. "TailCoR," Papers 2011.14817, arXiv.org.
    20. Abdelaati Daouia & Simone A. Padoan & Gilles Stupfler, 2024. "Extreme expectile estimation for short-tailed data," Post-Print hal-04672516, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:32:y:2017:i:4:d:10.1007_s00180-016-0706-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.