Boosting in Cox regression: a comparison between the likelihood-based and the model-based approaches with focus on the R-packages CoxBoost and mboost
Author
Abstract
Suggested Citation
DOI: 10.1007/s00180-015-0642-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Benjamin Hofner & Torsten Hothorn & Thomas Kneib, 2013. "Variable selection and model choice in structured survival models," Computational Statistics, Springer, vol. 28(3), pages 1079-1101, June.
- Benjamin Hofner & Andreas Mayr & Nikolay Robinzonov & Matthias Schmid, 2014. "Model-based boosting in R: a hands-on tutorial using the R package mboost," Computational Statistics, Springer, vol. 29(1), pages 3-35, February.
- Gerhard Tutz & Harald Binder, 2006. "Generalized Additive Modeling with Implicit Variable Selection by Likelihood-Based Boosting," Biometrics, The International Biometric Society, vol. 62(4), pages 961-971, December.
- Tutz, Gerhard & Binder, Harald, 2007. "Boosting ridge regression," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6044-6059, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Battauz, Michela & Vidoni, Paolo, 2022. "A likelihood-based boosting algorithm for factor analysis models with binary data," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
- Yanis Tazi & Juan E. Arango-Ossa & Yangyu Zhou & Elsa Bernard & Ian Thomas & Amanda Gilkes & Sylvie Freeman & Yoann Pradat & Sean J. Johnson & Robert Hills & Richard Dillon & Max F. Levine & Daniel Le, 2022. "Unified classification and risk-stratification in Acute Myeloid Leukemia," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
- Riccardo De Bin & Vegard Grødem Stikbakke, 2023. "A boosting first-hitting-time model for survival analysis in high-dimensional settings," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 420-440, April.
- Heidi Seibold & Christoph Bernau & Anne-Laure Boulesteix & Riccardo De Bin, 2018. "On the choice and influence of the number of boosting steps for high-dimensional linear Cox-models," Computational Statistics, Springer, vol. 33(3), pages 1195-1215, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Marra, Giampiero & Wood, Simon N., 2011. "Practical variable selection for generalized additive models," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2372-2387, July.
- Stefanie Hieke & Axel Benner & Richard F Schlenk & Martin Schumacher & Lars Bullinger & Harald Binder, 2016. "Identifying Prognostic SNPs in Clinical Cohorts: Complementing Univariate Analyses by Resampling and Multivariable Modeling," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-18, May.
- Faisal Zahid & Gerhard Tutz, 2013. "Multinomial logit models with implicit variable selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(4), pages 393-416, December.
- Sariyar Murat & Schumacher Martin & Binder Harald, 2014. "A boosting approach for adapting the sparsity of risk prediction signatures based on different molecular levels," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(3), pages 343-357, June.
- Hainaut, Donatien & Trufin, Julien & Denuit, Michel, 2021. "Response versus gradient boosting trees, GLMs and neural networks under Tweedie loss and log-link," LIDAM Discussion Papers ISBA 2021012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Heidi Seibold & Christoph Bernau & Anne-Laure Boulesteix & Riccardo De Bin, 2018. "On the choice and influence of the number of boosting steps for high-dimensional linear Cox-models," Computational Statistics, Springer, vol. 33(3), pages 1195-1215, September.
- Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
- Riccardo De Bin & Vegard Grødem Stikbakke, 2023. "A boosting first-hitting-time model for survival analysis in high-dimensional settings," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 420-440, April.
- Wang Zhu & Wang C.Y., 2010. "Buckley-James Boosting for Survival Analysis with High-Dimensional Biomarker Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-33, June.
- Philip Kostov, 2010. "Do Buyers’ Characteristics and Personal Relationships Affect Agricultural Land Prices?," Land Economics, University of Wisconsin Press, vol. 86(1), pages 48-65.
- Juan Torres Munguía, 2024. "Identifying Gender-Specific Risk Factors for Income Poverty across Poverty Levels in Urban Mexico: A Model-Based Boosting Approach," Social Sciences, MDPI, vol. 13(3), pages 1-21, March.
- Yousuf, Kashif & Ng, Serena, 2021.
"Boosting high dimensional predictive regressions with time varying parameters,"
Journal of Econometrics, Elsevier, vol. 224(1), pages 60-87.
- Kashif Yousuf & Serena Ng, 2019. "Boosting High Dimensional Predictive Regressions with Time Varying Parameters," Papers 1910.03109, arXiv.org.
- Philipp F. M. Baumann & Enzo Rossi & Alexander Volkmann, 2020.
"What Drives Inflation and How: Evidence from Additive Mixed Models Selected by cAIC,"
Papers
2006.06274, arXiv.org, revised Aug 2022.
- Philipp F. M. Baumann & Dr. Enzo Rossi & Alexander Volkmann, 2021. "What drives inflation and how? Evidence from additive mixed models selected by cAIC," Working Papers 2021-12, Swiss National Bank.
- Osamu Komori, 2011. "A boosting method for maximization of the area under the ROC curve," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(5), pages 961-979, October.
- Belitz, Christiane & Lang, Stefan, 2008. "Simultaneous selection of variables and smoothing parameters in structured additive regression models," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 61-81, September.
- Gerhard Tutz & Gunther Schauberger, 2015. "A Penalty Approach to Differential Item Functioning in Rasch Models," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 21-43, March.
- Heikki Kauppi, 2019. "Recession Prediction with OptimalUse of Leading Indicators," Discussion Papers 125, Aboa Centre for Economics.
- Ngandu Balekelayi & Solomon Tesfamariam, 2020. "Geoadditive Quantile Regression Model for Sewer Pipes Deterioration Using Boosting Optimization Algorithm," Sustainability, MDPI, vol. 12(20), pages 1-24, October.
- Battauz, Michela & Vidoni, Paolo, 2022. "A likelihood-based boosting algorithm for factor analysis models with binary data," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
- Juan Armando Torres Munguía, 2024. "A model-based boosting approach to risk factors for physical intimate partner violence against women and girls in Mexico," Journal of Computational Social Science, Springer, vol. 7(2), pages 1937-1963, October.
More about this item
Keywords
Cox model; Gradient descent; Mandatory variables; Partial likelihood; Survival analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:31:y:2016:i:2:d:10.1007_s00180-015-0642-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.