IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v30y2015i4p957-986.html
   My bibliography  Save this article

Efficient resolution and basis functions selection in wavelet regression

Author

Listed:
  • Chun Park
  • Inyoung Kim

Abstract

In this paper we propose an efficient method to determine a primary resolution and wavelet basis functions in wavelet regression. Most wavelet shrinkage methods focus on thresholding the wavelet coefficients, given a primary resolution which is usually determined by the sample size. However, both a primary resolution and the basis functions are affected by the shape of an unknown function rather than the sample size. Unlike existing methods, our method takes the shape of the unknown function into account because a proper resolution can be much affected by the shape of it rather than the sample size. Our approach to determine a primary resolution and wavelet basis functions is developed under Bayesian framework using the posterior model probability. We demonstrate the advantage of our approach using a simulation study and a real data application. Copyright Springer-Verlag Berlin Heidelberg 2015

Suggested Citation

  • Chun Park & Inyoung Kim, 2015. "Efficient resolution and basis functions selection in wavelet regression," Computational Statistics, Springer, vol. 30(4), pages 957-986, December.
  • Handle: RePEc:spr:compst:v:30:y:2015:i:4:p:957-986
    DOI: 10.1007/s00180-015-0575-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-015-0575-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-015-0575-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Antoniadis A. & Fan J., 2001. "Regularization of Wavelet Approximations," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 939-967, September.
    2. Chun Park & Hee-Seok Oh & Hakbae Lee, 2008. "Bayesian selection of primary resolution and wavelet basis functions for wavelet regression," Computational Statistics, Springer, vol. 23(2), pages 291-302, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amato, Umberto & Antoniadis, Anestis & De Feis, Italia & Goude, Yannig & Lagache, Audrey, 2021. "Forecasting high resolution electricity demand data with additive models including smooth and jagged components," International Journal of Forecasting, Elsevier, vol. 37(1), pages 171-185.
    2. Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2015. "Risks of large portfolios," Journal of Econometrics, Elsevier, vol. 186(2), pages 367-387.
    3. Umberto Amato & Anestis Antoniadis & Italia De Feis & Irene Gijbels, 2021. "Penalised robust estimators for sparse and high-dimensional linear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 1-48, March.
    4. Joel L. Horowitz & Jian Huang, 2012. "Penalized estimation of high-dimensional models under a generalized sparsity condition," CeMMAP working papers 17/12, Institute for Fiscal Studies.
    5. Bartosz Uniejewski, 2024. "Regularization for electricity price forecasting," Papers 2404.03968, arXiv.org.
    6. Matthieu Garcin & Dominique Guegan, 2015. "Optimal wavelet shrinkage of a noisy dynamical system with non-linear noise impact," Documents de travail du Centre d'Economie de la Sorbonne 15085, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    7. Sophie Lambert-Lacroix & Laurent Zwald, 2016. "The adaptive BerHu penalty in robust regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(3), pages 487-514, September.
    8. Joel L. Horowitz & Jian Huang, 2012. "Penalized estimation of high-dimensional models under a generalized sparsity condition," CeMMAP working papers CWP17/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Chen, Ying & Niu, Linlin & Chen, Ray-Bing & He, Qiang, 2019. "Sparse-Group Independent Component Analysis with application to yield curves prediction," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 76-89.
    10. Sumanjay Dutta & Shashi Jain, 2023. "Precision versus Shrinkage: A Comparative Analysis of Covariance Estimation Methods for Portfolio Allocation," Papers 2305.11298, arXiv.org.
    11. Saman Banafti & Tae-Hwy Lee, 2022. "Inferential Theory for Granular Instrumental Variables in High Dimensions," Papers 2201.06605, arXiv.org, revised Sep 2023.
    12. Hee-Seok Oh & Donghoh Kim & Youngjo Lee, 2009. "Cross-validated wavelet shrinkage," Computational Statistics, Springer, vol. 24(3), pages 497-512, August.
    13. Kim, Donghoh & Oh, Hee-Seok, 2006. "CVTresh: R Package for Level-Dependent Cross-Validation Thresholding," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 15(i10).
    14. Umberto Amato & Anestis Antoniadis & Italia Feis & Irène Gijbels, 2022. "Penalized wavelet estimation and robust denoising for irregular spaced data," Computational Statistics, Springer, vol. 37(4), pages 1621-1651, September.
    15. Fujii, Toru & Konishi, Sadanori, 2006. "Nonlinear regression modeling via regularized wavelets and smoothing parameter selection," Journal of Multivariate Analysis, Elsevier, vol. 97(9), pages 2023-2033, October.
    16. Xin-Bing Kong & Zhi Liu & Yuan Yao & Wang Zhou, 2017. "Sure screening by ranking the canonical correlations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 46-70, March.
    17. Matthieu Garcin & Dominique Guegan, 2015. "Optimal wavelet shrinkage of a noisy dynamical system with non-linear noise impact," Post-Print halshs-01244239, HAL.
    18. Fan, Jianqing & Wang, Weichen & Zhong, Yiqiao, 2019. "Robust covariance estimation for approximate factor models," Journal of Econometrics, Elsevier, vol. 208(1), pages 5-22.
    19. Alan T. K. Wan & Jinhong You & Riquan Zhang, 2016. "A Seemingly Unrelated Nonparametric Additive Model with Autoregressive Errors," Econometric Reviews, Taylor & Francis Journals, vol. 35(5), pages 894-928, May.
    20. Luz M. Gómez & Rogério F. Porto & Pedro A. Morettin, 2021. "Nonparametric regression with warped wavelets and strong mixing processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(6), pages 1203-1228, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:30:y:2015:i:4:p:957-986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.