IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v30y2015i4p1185-1198.html
   My bibliography  Save this article

A new generalization of lifetime distributions

Author

Listed:
  • Leila Delgarm
  • Mohammad Zadkarami

Abstract

In the current study, we set out to extend the three-parameter Modified Weibull (MW) distribution in an attempt to propose a four-parameter distribution named the Modified Weibull Poisson (MWP) distribution including such noticeable submodels as Exponential Poisson, Weibull Poisson, and Rayleigh Poisson known as the distributions subsumed under the umbrella term MWP. Depending on its parameter values, this overarching distribution was demonstrated by this work to exhibit some hazard rates like decreasing, increasing, bathtub, and upside-down bathtub ones. In addition to the hazard rates of the MWP, the mathematical properties as well as the properties of maximum likelihood estimations were brought to the forefront, and the very capability of the quantile measures to be explicitly expressed in terms of the Lambert W function was vigorously discussed. To shed light on the functioning of the maximum likelihood estimators and their asymptomatic results for the finite sample sizes, some numerical experiments were carried out leading to two data sets intended chiefly to illustrate or explicate the higher levels of importance and flexibility of the MWP in comparison with its standard counterparts, namely the Weibull, Gamma, and MW distributions. Copyright Springer-Verlag Berlin Heidelberg 2015

Suggested Citation

  • Leila Delgarm & Mohammad Zadkarami, 2015. "A new generalization of lifetime distributions," Computational Statistics, Springer, vol. 30(4), pages 1185-1198, December.
  • Handle: RePEc:spr:compst:v:30:y:2015:i:4:p:1185-1198
    DOI: 10.1007/s00180-015-0563-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-015-0563-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-015-0563-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carrasco, Jalmar M.F. & Ortega, Edwin M.M. & Cordeiro, Gauss M., 2008. "A generalized modified Weibull distribution for lifetime modeling," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 450-462, December.
    2. Kus, Coskun, 2007. "A new lifetime distribution," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4497-4509, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sandeep Kumar Maurya & Saralees Nadarajah, 2021. "Poisson Generated Family of Distributions: A Review," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 484-540, November.
    2. Muhammad H Tahir & Gauss M. Cordeiro, 2016. "Compounding of distributions: a survey and new generalized classes," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-35, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silva, Rodrigo B. & Bourguignon, Marcelo & Dias, Cícero R.B. & Cordeiro, Gauss M., 2013. "The compound class of extended Weibull power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 352-367.
    2. Chahkandi, M. & Ganjali, M., 2009. "On some lifetime distributions with decreasing failure rate," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4433-4440, October.
    3. Bagheri, S.F. & Bahrami Samani, E. & Ganjali, M., 2016. "The generalized modified Weibull power series distribution: Theory and applications," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 136-160.
    4. Al-Mutairi, D.K. & Ghitany, M.E. & Gupta, Ramesh C., 2011. "Estimation of reliability in a series system with random sample size," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 964-972, February.
    5. Manoj Kumar & Sanjay Kumar Singh & Umesh Singh, 2018. "Bayesian inference for Poisson-inverse exponential distribution under progressive type-II censoring with binomial removal," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(6), pages 1235-1249, December.
    6. Hadi Saboori & Ghobad Barmalzan & Seyyed Masih Ayat, 2020. "Generalized Modified Inverse Weibull Distribution: Its Properties and Applications," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 247-269, November.
    7. Abdulhakim A. Al-Babtain & Ibrahim Elbatal & Christophe Chesneau & Farrukh Jamal, 2020. "Box-Cox Gamma-G Family of Distributions: Theory and Applications," Mathematics, MDPI, vol. 8(10), pages 1-24, October.
    8. Gauss M. Cordeiro & Giovana O. Silva & Edwin M. M. Ortega, 2016. "An extended-G geometric family," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-16, December.
    9. Mohamed Elamin Abdallah Mohamed Elamin Omer & Mohd Rizam Abu Bakar & Mohd Bakri Adam & Mohd Shafie Mustafa, 2020. "Cure Models with Exponentiated Weibull Exponential Distribution for the Analysis of Melanoma Patients," Mathematics, MDPI, vol. 8(11), pages 1-15, November.
    10. Rasool Roozegar & Saralees Nadarajah & Eisa Mahmoudi, 2022. "The Power Series Exponential Power Series Distributions with Applications to Failure Data Sets," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 44-78, May.
    11. Mohamed S. Eliwa & Muhammad H. Tahir & Muhammad A. Hussain & Bader Almohaimeed & Afrah Al-Bossly & Mahmoud El-Morshedy, 2023. "Univariate Probability-G Classes for Scattered Samples under Different Forms of Hazard: Continuous and Discrete Version with Their Inferences Tests," Mathematics, MDPI, vol. 11(13), pages 1-24, June.
    12. Louzada, Francisco & Roman, Mari & Cancho, Vicente G., 2011. "The complementary exponential geometric distribution: Model, properties, and a comparison with its counterpart," Computational Statistics & Data Analysis, Elsevier, vol. 55(8), pages 2516-2524, August.
    13. Gauss Cordeiro & Cláudio Cristino & Elizabeth Hashimoto & Edwin Ortega, 2013. "The beta generalized Rayleigh distribution with applications to lifetime data," Statistical Papers, Springer, vol. 54(1), pages 133-161, February.
    14. Bakouch, Hassan S. & Ristić, Miroslav M. & Asgharzadeh, A. & Esmaily, L. & Al-Zahrani, Bander M., 2012. "An exponentiated exponential binomial distribution with application," Statistics & Probability Letters, Elsevier, vol. 82(6), pages 1067-1081.
    15. Barriga, Gladys D.C. & Louzada-Neto, Franscisco & Cancho, Vicente G., 2011. "The complementary exponential power lifetime model," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1250-1259, March.
    16. Mehrzad Ghorbani & Seyed Fazel Bagheri & Mojtaba Alizadeh, 2017. "A New Family of Distributions: The Additive Modified Weibull Odd Log-logistic-G Poisson Family, Properties and Applications," Annals of Data Science, Springer, vol. 4(2), pages 249-287, June.
    17. Mekalathur B Hemanth Kumar & Saravanan Balasubramaniyan & Sanjeevikumar Padmanaban & Jens Bo Holm-Nielsen, 2019. "Wind Energy Potential Assessment by Weibull Parameter Estimation Using Multiverse Optimization Method: A Case Study of Tirumala Region in India," Energies, MDPI, vol. 12(11), pages 1-21, June.
    18. Yuancheng Si & Saralees Nadarajah, 2020. "Lindley Power Series Distributions," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(1), pages 242-256, February.
    19. Feyza Günay & Mehmet Yilmaz, 2018. "Different Parameter Estimation Methods for Exponential Geometric Distribution and Its Applications in Lifetime Data Analysis," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 8(2), pages 36-43, September.
    20. Yair Orbach & Gila Fruchter, 2014. "Predicting product life cycle patterns," Marketing Letters, Springer, vol. 25(1), pages 37-52, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:30:y:2015:i:4:p:1185-1198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.