IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v28y2013i6p2749-2759.html
   My bibliography  Save this article

A PC algorithm variation for ordinal variables

Author

Listed:
  • Flaminia Musella

Abstract

Bayesian networks are graphical models that represent the joint distribution of a set of variables using directed acyclic graphs. The graph can be manually built by domain experts according to their knowledge. However, when the dependence structure is unknown (or partially known) the network has to be estimated from data by using suitable learning algorithms. In this paper, we deal with a constraint-based method to perform Bayesian networks structural learning in the presence of ordinal variables. We propose an alternative version of the PC algorithm, which is one of the most known procedures, with the aim to infer the network by accounting for additional information inherent to ordinal data. The proposal is based on a nonparametric test, appropriate for ordinal variables. A comparative study shows that, in some situations, the proposal discussed here is a slightly more efficient solution than the PC algorithm. Copyright Springer-Verlag Berlin Heidelberg 2013

Suggested Citation

  • Flaminia Musella, 2013. "A PC algorithm variation for ordinal variables," Computational Statistics, Springer, vol. 28(6), pages 2749-2759, December.
  • Handle: RePEc:spr:compst:v:28:y:2013:i:6:p:2749-2759
    DOI: 10.1007/s00180-013-0426-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-013-0426-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-013-0426-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hanea, A.M. & Kurowicka, D. & Cooke, R.M. & Ababei, D.A., 2010. "Mining and visualising ordinal data with non-parametric continuous BBNs," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 668-687, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Flaminia Musella & Paola Vicard & Maria Chiara De Angelis, 2022. "A Bayesian Network Model for Supporting School Managers Decisions in the Pandemic Era," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 163(3), pages 1445-1465, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pierpaolo D’Urso & Vincenzina Vitale, 2020. "Bayesian Networks Model Averaging for Bes Indicators," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 151(3), pages 897-919, October.
    2. Pierpaolo D’Urso & Vincenzina Vitale, 2021. "Modeling Local BES Indicators by Copula-Based Bayesian Networks," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 153(3), pages 823-847, February.
    3. Vincenzina Vitale & Flaminia Musella & Paola Vicard & Valentina Guizzi, 2020. "Modelling an energy market with Bayesian networks for non-normal data," Computational Management Science, Springer, vol. 17(1), pages 47-64, January.
    4. Pierpalo D’Urso & Livia Giovanni & Vincenzina Vitale, 2023. "A Bayesian network to analyse basketball players’ performances: a multivariate copula-based approach," Annals of Operations Research, Springer, vol. 325(1), pages 419-440, June.
    5. Morales-Nápoles, Oswaldo & Steenbergen, Raphaël D.J.M., 2014. "Analysis of axle and vehicle load properties through Bayesian Networks based on Weigh-in-Motion data," Reliability Engineering and System Safety, Elsevier, vol. 125(C), pages 153-164.
    6. Hobæk Haff, Ingrid & Aas, Kjersti & Frigessi, Arnoldo & Lacal, Virginia, 2016. "Structure learning in Bayesian Networks using regular vines," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 186-208.
    7. Hanea, Anca & Morales Napoles, Oswaldo & Ababei, Dan, 2015. "Non-parametric Bayesian networks: Improving theory and reviewing applications," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 265-284.
    8. Francis, Royce A. & Guikema, Seth D. & Henneman, Lucas, 2014. "Bayesian Belief Networks for predicting drinking water distribution system pipe breaks," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 1-11.
    9. KIM, Junyung & ZHAO, Xingang & SHAH, Asad Ullah Amin & KANG, Hyun Gook, 2021. "System risk quantification and decision making support using functional modeling and dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 215(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:28:y:2013:i:6:p:2749-2759. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.