IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v28y2013i2p505-517.html
   My bibliography  Save this article

On maximization of the likelihood for the generalized gamma distribution

Author

Listed:
  • Angela Noufaily
  • M. Jones

Abstract

We explore computational aspects of likelihood maximization for the generalized gamma (GG) distribution. We formulate a version of the score equations such that the equations involved are individually uniquely solvable. We observe that the resulting algorithm is well-behaved and competitive with the application of standard optimisation procedures. We also show that a somewhat neglected alternative existing approach to solving the score equations is good too, at least in the basic, three-parameter case. Most importantly, we argue that, in practice far from being problematic as a number of authors have suggested, the GG distribution is actually particularly amenable to maximum likelihood estimation, by the standards of general three- or more-parameter distributions. We do not, however, make any theoretical advances on questions of convergence of algorithms or uniqueness of roots. Copyright Springer-Verlag 2013

Suggested Citation

  • Angela Noufaily & M. Jones, 2013. "On maximization of the likelihood for the generalized gamma distribution," Computational Statistics, Springer, vol. 28(2), pages 505-517, April.
  • Handle: RePEc:spr:compst:v:28:y:2013:i:2:p:505-517
    DOI: 10.1007/s00180-012-0314-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-012-0314-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-012-0314-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gomes, O. & Combes, C. & Dussauchoy, A., 2008. "Parameter estimation of the generalized gamma distribution," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(4), pages 955-963.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martínez-Ovando Juan Carlos & Olivares-Guzmán Sergio I. & Roldán-Rodríguez Adriana, 2014. "Predictive Inference on Finite Populations Segmented in Planned and Unplanned Domains," Working Papers 2014-04, Banco de México.
    2. Pedro L Ramos & Diego C Nascimento & Paulo H Ferreira & Karina T Weber & Taiza E G Santos & Francisco Louzada, 2019. "Modeling traumatic brain injury lifetime data: Improved estimators for the Generalized Gamma distribution under small samples," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-22, August.
    3. Angela Noufaily & M. C. Jones, 2013. "Parametric quantile regression based on the generalized gamma distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(5), pages 723-740, November.
    4. Adam Martin-Schwarze & Jarad Niemi & Philip Dixon, 2017. "Assessing the Impacts of Time-to-Detection Distribution Assumptions on Detection Probability Estimation," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(4), pages 465-480, December.
    5. André Pereira & Bernardo Andrade, 2015. "On the genetic algorithm with adaptive mutation rate and selected statistical applications," Computational Statistics, Springer, vol. 30(1), pages 131-150, March.
    6. Combes, Catherine & Ng, Hon Keung Tony, 2022. "On parameter estimation for Amoroso family of distributions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 309-327.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Willams B. F. da Silva & Pedro M. Almeida‐Junior & Abraão D. C. Nascimento, 2023. "Generalized gamma ARMA process for synthetic aperture radar amplitude and intensity data," Environmetrics, John Wiley & Sons, Ltd., vol. 34(7), November.
    2. Yilmaz, Hulya & Sazak, Hakan S., 2014. "Double-looped maximum likelihood estimation for the parameters of the generalized gamma distribution," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 98(C), pages 18-30.
    3. Jordá, Vanesa & Alonso, José M., 2017. "New Estimates on Educational Attainment Using a Continuous Approach (1970–2010)," World Development, Elsevier, vol. 90(C), pages 281-293.
    4. Eduardo Gutiérrez González & José Villaseñor Alva & Olga Panteleeva & Humberto Vaquera Huerta, 2013. "On testing the log-gamma distribution hypothesis by bootstrap," Computational Statistics, Springer, vol. 28(6), pages 2761-2776, December.
    5. Combes, Catherine & Ng, Hon Keung Tony, 2022. "On parameter estimation for Amoroso family of distributions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 309-327.
    6. Marques, Filipe J. & Loingeville, Florence, 2016. "Improved near-exact distributions for the product of independent Generalized Gamma random variables," Computational Statistics & Data Analysis, Elsevier, vol. 102(C), pages 55-66.
    7. Volkan Soner Özsoy & Mehmet Güray Ünsal & H. Hasan Örkcü, 2020. "Use of the heuristic optimization in the parameter estimation of generalized gamma distribution: comparison of GA, DE, PSO and SA methods," Computational Statistics, Springer, vol. 35(4), pages 1895-1925, December.
    8. Cynthia Tojeiro & Francisco Louzada, 2012. "A general threshold stress hybrid hazard model for lifetime data," Statistical Papers, Springer, vol. 53(4), pages 833-848, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:28:y:2013:i:2:p:505-517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.