IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v27y2012i3p523-530.html
   My bibliography  Save this article

Rayleigh projection depth

Author

Listed:
  • Yonggang Hu
  • Qiang Li
  • Yong Wang
  • Yi Wu

Abstract

In this paper, a novel projection-based depth based on the Rayleigh quotient, Rayleigh projection depth (RPD), is proposed. Although, the traditional projection depth (PD) has many good properties, it is indeed not practical due to its difficult computation, especially for the high-dimensional data sets. Defined on the mean and variance of the data sets, the new depth, RPD, can be computed directly by solving a problem of generalized eigenvalue. Meanwhile, we extend the RPD as generalized RPD (GRPD) to make it suitable for the sparse samples with singular covariance matrix. Theoretical results show that RPD is also an ideal statistical depth, though it is less robust than PD. Copyright Springer-Verlag 2012

Suggested Citation

  • Yonggang Hu & Qiang Li & Yong Wang & Yi Wu, 2012. "Rayleigh projection depth," Computational Statistics, Springer, vol. 27(3), pages 523-530, September.
  • Handle: RePEc:spr:compst:v:27:y:2012:i:3:p:523-530
    DOI: 10.1007/s00180-011-0273-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-011-0273-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-011-0273-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Yonghong, 2003. "Data depth based on spatial rank," Statistics & Probability Letters, Elsevier, vol. 65(3), pages 217-225, November.
    2. Cuevas, Antonio & Fraiman, Ricardo, 2009. "On depth measures and dual statistics. A methodology for dealing with general data," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 753-766, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grünewald, Philipp H. & Cockerill, Timothy T. & Contestabile, Marcello & Pearson, Peter J.G., 2012. "The socio-technical transition of distributed electricity storage into future networks—System value and stakeholder views," Energy Policy, Elsevier, vol. 50(C), pages 449-457.
    2. Marius Bulearca & Catalin Popescu, 2015. "The Strategy For Sustainable Use Of Natural Resources And The Role Of State," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 6, pages 260-264, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:cte:wsrepe:ws120906 is not listed on IDEAS
    2. Carlo Sguera & Pedro Galeano & Rosa Lillo, 2014. "Spatial depth-based classification for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 725-750, December.
    3. Nieto-Reyes, Alicia & Battey, Heather, 2021. "A topologically valid construction of depth for functional data," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    4. Fraiman, Ricardo & Moreno, Leonardo & Ransford, Thomas, 2023. "A Cramér–Wold theorem for elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    5. Llop, P. & Forzani, L. & Fraiman, R., 2011. "On local times, density estimation and supervised classification from functional data," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 73-86, January.
    6. Nagy, Stanislav & Ferraty, Frédéric, 2019. "Data depth for measurable noisy random functions," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 95-114.
    7. Fraiman, Ricardo & Gamboa, Fabrice & Moreno, Leonardo, 2019. "Connecting pairwise geodesic spheres by depth: DCOPS," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 81-94.
    8. Ricardo Fraiman & Leonardo Moreno & Sebastian Vallejo, 2017. "Some hypothesis tests based on random projection," Computational Statistics, Springer, vol. 32(3), pages 1165-1189, September.
    9. Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.
    10. J. Cuesta-Albertos & M. Febrero-Bande, 2010. "A simple multiway ANOVA for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 537-557, November.
    11. Lucas Fernandez-Piana & Marcela Svarc, 2022. "An integrated local depth measure," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(2), pages 175-197, June.
    12. Olusola Samuel Makinde, 2019. "Classification rules based on distribution functions of functional depth," Statistical Papers, Springer, vol. 60(3), pages 629-640, June.
    13. Han Shang, 2014. "A survey of functional principal component analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
    14. Fraiman, Ricardo & Svarc, Marcela, 2013. "Resistant estimates for high dimensional and functional data based on random projections," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 326-338.
    15. Dai, Wenlin & Genton, Marc G., 2019. "Directional outlyingness for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 50-65.
    16. Fraiman, Ricardo & Pateiro-López, Beatriz, 2012. "Quantiles for finite and infinite dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 108(C), pages 1-14.
    17. Ramsay, Kelly & Durocher, Stephane & Leblanc, Alexandre, 2021. "Robustness and asymptotics of the projection median," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    18. W. Lok & Stephen Lee, 2011. "A new statistical depth function with applications to multimodal data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(3), pages 617-631.
    19. Graciela Estévez-Pérez & Philippe Vieu, 2021. "A new way for ranking functional data with applications in diagnostic test," Computational Statistics, Springer, vol. 36(1), pages 127-154, March.
    20. Marc Ditzhaus & Daniel Gaigall, 2022. "Testing marginal homogeneity in Hilbert spaces with applications to stock market returns," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 749-770, September.
    21. Yonggang Hu & Yong Wang & Yi Wu & Qiang Li & Chenping Hou, 2011. "Generalized Mahalanobis depth in the reproducing kernel Hilbert space," Statistical Papers, Springer, vol. 52(3), pages 511-522, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:27:y:2012:i:3:p:523-530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.