Penalised spline support vector classifiers: computational issues
Author
Abstract
Suggested Citation
DOI: 10.1007/s00180-007-0102-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, January.
- Simon N. Wood, 2003. "Thin plate regression splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 95-114, February.
- Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, January.
- Dudoit S. & Fridlyand J. & Speed T. P, 2002. "Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 77-87, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Longhi, Christian & Musolesi, Antonio & Baumont, Catherine, 2014.
"Modeling structural change in the European metropolitan areas during the process of economic integration,"
Economic Modelling, Elsevier, vol. 37(C), pages 395-407.
- Christian Longhi & Antonio Musolesi & Catherine Baumont, 2014. "Modeling structural change in the European metropolitan areas during the process of economic integration," Post-Print halshs-01228053, HAL.
- Strasak, Alexander M. & Umlauf, Nikolaus & Pfeiffer, Ruth M. & Lang, Stefan, 2011. "Comparing penalized splines and fractional polynomials for flexible modelling of the effects of continuous predictor variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1540-1551, April.
- Ferraccioli, Federico & Sangalli, Laura M. & Finos, Livio, 2022. "Some first inferential tools for spatial regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Carlo Fezzi & Ian Bateman, 2015.
"The Impact of Climate Change on Agriculture: Nonlinear Effects and Aggregation Bias in Ricardian Models of Farmland Values,"
Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 57-92.
- Carlo Fezzi & Ian Bateman, 2013. "The Impact of Climate Change on Agriculture: Nonlinear Effects and Aggregation Bias in Ricardian Models of Farm Land Values," Working Papers 2013.94, Fondazione Eni Enrico Mattei.
- Fezzi, Carlo & Bateman, Ian J., 2013. "The Impact of Climate Change on Agriculture: Nonlinear Effects and Aggregation Bias in Ricardian Models of Farm Land Values," Climate Change and Sustainable Development 162377, Fondazione Eni Enrico Mattei (FEEM).
- Basile, Roberto & Durbán, María & Mínguez, Román & María Montero, Jose & Mur, Jesús, 2014. "Modeling regional economic dynamics: Spatial dependence, spatial heterogeneity and nonlinearities," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 229-245.
- Gressani, Oswaldo & Lambert, Philippe, 2021. "Laplace approximations for fast Bayesian inference in generalized additive models based on P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
- Philip T. Reiss & R. Todd Ogden, 2010. "Functional Generalized Linear Models with Images as Predictors," Biometrics, The International Biometric Society, vol. 66(1), pages 61-69, March.
- Roca-Pardinas, Javier & Cadarso-Suarez, Carmen & Tahoces, Pablo G. & Lado, Maria J., 2008. "Assessing continuous bivariate effects among different groups through nonparametric regression models: An application to breast cancer detection," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1958-1970, January.
- Simon N. Wood & Zheyuan Li & Gavin Shaddick & Nicole H. Augustin, 2017. "Generalized Additive Models for Gigadata: Modeling the U.K. Black Smoke Network Daily Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1199-1210, July.
- Stefan Lang & Nikolaus Umlauf & Peter Wechselberger & Kenneth Harttgen & Thomas Kneib, 2012. "Multilevel structured additive regression," Working Papers 2012-07, Faculty of Economics and Statistics, Universität Innsbruck.
- Giampiero Marra & Rosalba Radice & Till Bärnighausen & Simon N. Wood & Mark E. McGovern, 2017.
"A Simultaneous Equation Approach to Estimating HIV Prevalence With Nonignorable Missing Responses,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 484-496, April.
- Giampiero Marra & Rosalba Radice & Till Bärnighausen & Simon N. Wood & Mark E. McGovern, 2016. "A Simultaneous Equation Approach to Estimating HIV Prevalence with Non-Ignorable Missing Responses," Economics Working Papers 16-02, Queen's Management School, Queen's University Belfast.
- Roman A. Jandarov & Lianne A. Sheppard & Paul D. Sampson & Adam A. Szpiro, 2017. "A novel principal component analysis for spatially misaligned multivariate air pollution data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 3-28, January.
- Arin, K. Peren & Berlemann, Michael & Koray, Faik & Kuhlenkasper, Torben, 2011. "The taxation-growth-nexus revisited," HWWI Research Papers 104, Hamburg Institute of International Economics (HWWI).
- Sylvie Charlot & Riccardo Crescenzi & Antonio Musolesi, 2014. "Augmented and Unconstrained: revisiting the Regional Knowledge Production Function," SEEDS Working Papers 2414, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Aug 2014.
- Ding, Chuan & Cao, Xinyu & Yu, Bin & Ju, Yang, 2021. "Non-linear associations between zonal built environment attributes and transit commuting mode choice accounting for spatial heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 22-35.
- Simon N. Wood, 2020. "Inference and computation with generalized additive models and their extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 307-339, June.
- Silas Bergen & Lianne Sheppard & Joel D. Kaufman & Adam A. Szpiro, 2016. "Multipollutant measurement error in air pollution epidemiology studies arising from predicting exposures with penalized regression splines," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(5), pages 731-753, November.
- Leitenstorfer, Florian & Tutz, Gerhard, 2007. "Knot selection by boosting techniques," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4605-4621, May.
- Yichen Gao & Yu Zhang & Ximing Wu, 2015. "Penalized exponential series estimation of copula densities with an application to intergenerational dependence of body mass index," Empirical Economics, Springer, vol. 48(1), pages 61-81, February.
- Musolesi Antonio & Mazzanti Massimiliano, 2014.
"Nonlinearity, heterogeneity and unobserved effects in the carbon dioxide emissions-economic development relation for advanced countries,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(5), pages 521-541, December.
- Mazzanti, M. & Musolesi, A., 2013. "Nonlinearity, heterogeneity and unobserved effects in the carbon dioxide emissions-economic development relation for advanced countries," Working Papers 2013-08, Grenoble Applied Economics Laboratory (GAEL).
- Massimiliano Mazzanti & Antonio Musolesi, 2014. "Nonlinearity, heterogeneity and unobserved effects in the carbon dioxide emissions-economic development relation for advanced countries," SEEDS Working Papers 2214, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Aug 2014.
- Antonio Musolesi & Massimiliano Mazzanti, 2014. "Nonlinearity, heterogeneity and unobserved effects in the carbon dioxide emissions-economic developement relation for advanced countries," Post-Print hal-01123027, HAL.
More about this item
Keywords
Additive models; Interior point methods; Low-dimensional structure; Low-rank Kernels; Semiparametric regression; Support vector machines;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:23:y:2008:i:4:p:623-641. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.