IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v17y2002i1d10.1007_s001800200093.html
   My bibliography  Save this article

A Comparison of Modelling Strategies for Value-Added Analyses of Educational Data

Author

Listed:
  • Neil H. Spencer

    (University of Hertfordshire)

  • Antony Fielding

    (University of Birmingham)

Abstract

Summary Modelling strategies for value-added multilevel models are examined. These types of models typically include an endogenous variable and this causes difficulties for the standard estimation techniques that are commonly used to analyse multilevel models. Two alternative estimation strategies are proposed: one using an instrumental variable approach and the other using a Bayesian analysis as available through the BUGS software. We conclude that the approach offered by the BUGS software has advantages over more classical estimation methods

Suggested Citation

  • Neil H. Spencer & Antony Fielding, 2002. "A Comparison of Modelling Strategies for Value-Added Analyses of Educational Data," Computational Statistics, Springer, vol. 17(1), pages 103-116, March.
  • Handle: RePEc:spr:compst:v:17:y:2002:i:1:d:10.1007_s001800200093
    DOI: 10.1007/s001800200093
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s001800200093
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s001800200093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Philip Heidelberger & Peter D. Welch, 1983. "Simulation Run Length Control in the Presence of an Initial Transient," Operations Research, INFORMS, vol. 31(6), pages 1109-1144, December.
    2. Harvey Goldstein & Sally Thomas, 1996. "Using Examination Results as Indicators of School and College Performance," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 159(1), pages 149-163, January.
    3. Spencer, N.H., 1998. "Consistent Parameter Estimation for Lagged Multilevel Models," Papers 1998:19, University of Hertfordshire - Business Schoool.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter Ebbes & Ulf Böckenholt & Michel Wedel, 2004. "Regressor and random‐effects dependencies in multilevel models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 58(2), pages 161-178, May.
    2. Jorge Manzi & Ernesto San Martín & Sébastien Van Bellegem, 2014. "School System Evaluation by Value Added Analysis Under Endogeneity," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 130-153, January.
    3. Neil Spencer, 2002. "Combining Modelling Strategies to Analyse Teaching Styles Data," Quality & Quantity: International Journal of Methodology, Springer, vol. 36(2), pages 113-127, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
    2. Hancock, Joana & Vieira, Sara & Lima, Hipólito & Schmitt, Vanessa & Pereira, Jaconias & Rebelo, Rui & Girondot, Marc, 2019. "Overcoming field monitoring restraints in estimating marine turtle internesting period by modelling individual nesting behaviour using capture-mark-recapture data," Ecological Modelling, Elsevier, vol. 402(C), pages 76-84.
    3. Lada, Emily K. & Wilson, James R., 2006. "A wavelet-based spectral procedure for steady-state simulation analysis," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1769-1801, November.
    4. Enver Yücesan, 1993. "Randomization tests for initialization bias in simulation output," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(5), pages 643-663, August.
    5. Riccardo (Jack) Lucchetti & Luca Pedini, 2020. "ParMA: Parallelised Bayesian Model Averaging for Generalised Linear Models," Working Papers 2020:28, Department of Economics, University of Venice "Ca' Foscari".
    6. Burda Martin & Bélisle Louis, 2019. "Copula multivariate GARCH model with constrained Hamiltonian Monte Carlo," Dependence Modeling, De Gruyter, vol. 7(1), pages 133-149, January.
    7. Yu, Jun, 2012. "A semiparametric stochastic volatility model," Journal of Econometrics, Elsevier, vol. 167(2), pages 473-482.
    8. Goldman Elena & Tsurumi Hiroki, 2005. "Bayesian Analysis of a Doubly Truncated ARMA-GARCH Model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(2), pages 1-38, June.
    9. Neil Spencer, 2002. "Combining Modelling Strategies to Analyse Teaching Styles Data," Quality & Quantity: International Journal of Methodology, Springer, vol. 36(2), pages 113-127, May.
    10. Andr'es Ram'irez-Hassan & Alejandro L'opez-Vera, 2021. "Semi-parametric estimation of the EASI model: Welfare implications of taxes identifying clusters due to unobserved preference heterogeneity," Papers 2109.07646, arXiv.org.
    11. Pickery, Jan, 2002. "Contextual effects on the vote in Germany: A multilevel analysis," Discussion Papers, Research Unit: Institutions and Social Change FS III 02-202, WZB Berlin Social Science Center.
    12. repec:lan:wpaper:991 is not listed on IDEAS
    13. Amoroso, S., 2013. "Heterogeneity of innovative, collaborative, and productive firm-level processes," Other publications TiSEM f5784a49-7053-401d-855d-1, Tilburg University, School of Economics and Management.
    14. Michael Edwards, 2010. "A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 75(3), pages 474-497, September.
    15. Hanneke Geerlings & Cees Glas & Wim Linden, 2011. "Modeling Rule-Based Item Generation," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 337-359, April.
    16. Manzi, Jorge & San Martin, Ernesto & Van Bellegem, Sébastien, 2010. "School System Evaluation By Value-Added Analysis under Endogeneity," IDEI Working Papers 631, Institut d'Économie Industrielle (IDEI), Toulouse.
    17. Peter Stüttgen & Peter Boatwright & Robert T. Monroe, 2012. "A Satisficing Choice Model," Marketing Science, INFORMS, vol. 31(6), pages 878-899, November.
    18. Sicsic, Jonathan & Krucien, Nicolas & Franc, Carine, 2016. "What are GPs' preferences for financial and non-financial incentives in cancer screening? Evidence for breast, cervical, and colorectal cancers," Social Science & Medicine, Elsevier, vol. 167(C), pages 116-127.
    19. Zhang, Xiao & Boscardin, W. John & Belin, Thomas R. & Wan, Xiaohai & He, Yulei & Zhang, Kui, 2015. "A Bayesian method for analyzing combinations of continuous, ordinal, and nominal categorical data with missing values," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 43-58.
    20. Ralf van der Lans & Bram Van den Bergh & Evelien Dieleman, 2014. "Partner Selection in Brand Alliances: An Empirical Investigation of the Drivers of Brand Fit," Marketing Science, INFORMS, vol. 33(4), pages 551-566, July.
    21. Wei Chen & Yixin Lu & Liangfei Qiu & Subodha Kumar, 2021. "Designing Personalized Treatment Plans for Breast Cancer," Information Systems Research, INFORMS, vol. 32(3), pages 932-949, September.

    More about this item

    Keywords

    Hierarchical Modelling; Iterative Generalized Least Squares; Gibbs Sampling; Endogeneity;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:17:y:2002:i:1:d:10.1007_s001800200093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.