IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v21y2024i1d10.1007_s10287-024-00510-5.html
   My bibliography  Save this article

Decomposition methods for monotone two-time-scale stochastic optimization problems

Author

Listed:
  • Tristan Rigaut

    (Schneider Electric)

  • Pierre Carpentier

    (ENSTA Paris)

  • Jean-Philippe Chancelier

    (École des Ponts ParisTech)

  • Michel Lara

    (École des Ponts ParisTech)

Abstract

It is common that strategic investment decisions are made at a slow time-scale, whereas operational decisions are made at a fast time-scale. Hence, the total number of decision stages may be huge. In this paper, we consider multistage stochastic optimization problems with two time-scales, and we propose a time block decomposition scheme to address them numerically. More precisely, (i) we write recursive Bellman-like equations at the slow time-scale and (ii), under a suitable monotonicity assumption, we propose computable upper and lower bounds—relying respectively on primal and dual decomposition—for the corresponding slow time-scale Bellman functions. With these functions, we are able to design policies. We assess the methods tractability and validate their efficiency by solving a battery management problem where the fast time-scale operational decisions have an impact on the storage current capacity, hence on the strategic decisions to renew the battery at the slow time-scale.

Suggested Citation

  • Tristan Rigaut & Pierre Carpentier & Jean-Philippe Chancelier & Michel Lara, 2024. "Decomposition methods for monotone two-time-scale stochastic optimization problems," Computational Management Science, Springer, vol. 21(1), pages 1-37, June.
  • Handle: RePEc:spr:comgts:v:21:y:2024:i:1:d:10.1007_s10287-024-00510-5
    DOI: 10.1007/s10287-024-00510-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10287-024-00510-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10287-024-00510-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benjamin Heymann & Pierre Martinon, 2018. "Optimal Battery Aging: An Adaptive Weights Dynamic Programming Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 1043-1053, December.
    2. Pierre Carpentier & Jean-Philippe Chancelier & Michel Lara & François Pacaud, 2020. "Mixed Spatial and Temporal Decompositions for Large-Scale Multistage Stochastic Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 985-1005, September.
    3. Michal Kaut, 2021. "Scenario generation by selection from historical data," Computational Management Science, Springer, vol. 18(3), pages 411-429, July.
    4. Michal Kaut & Kjetil Midthun & Adrian Werner & Asgeir Tomasgard & Lars Hellemo & Marte Fodstad, 2014. "Multi-horizon stochastic programming," Computational Management Science, Springer, vol. 11(1), pages 179-193, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Castro, Jordi & Escudero, Laureano F. & Monge, Juan F., 2023. "On solving large-scale multistage stochastic optimization problems with a new specialized interior-point approach," European Journal of Operational Research, Elsevier, vol. 310(1), pages 268-285.
    2. Rocha, Paula & Kaut, Michal & Siddiqui, Afzal S., 2016. "Energy-efficient building retrofits: An assessment of regulatory proposals under uncertainty," Energy, Elsevier, vol. 101(C), pages 278-287.
    3. Giovanni Pantuso, 2021. "A node formulation for multistage stochastic programs with endogenous uncertainty," Computational Management Science, Springer, vol. 18(3), pages 325-354, July.
    4. Hwangbo, Soonho & Heo, SungKu & Yoo, ChangKyoo, 2022. "Development of deterministic-stochastic model to integrate variable renewable energy-driven electricity and large-scale utility networks: Towards decarbonization petrochemical industry," Energy, Elsevier, vol. 238(PC).
    5. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Nybø, Astrid, 2020. "Transitioning remote Arctic settlements to renewable energy systems – A modelling study of Longyearbyen, Svalbard," Applied Energy, Elsevier, vol. 258(C).
    6. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Seljom, Pernille & Lind, Arne & Wagner, Fabian & Mesfun, Sennai, 2020. "Short-term solar and wind variability in long-term energy system models - A European case study," Energy, Elsevier, vol. 209(C).
    7. Martin Glanzer & Georg Ch. Pflug, 2020. "Multiscale stochastic optimization: modeling aspects and scenario generation," Computational Optimization and Applications, Springer, vol. 75(1), pages 1-34, January.
    8. Backe, Stian & Ahang, Mohammadreza & Tomasgard, Asgeir, 2021. "Stable stochastic capacity expansion with variable renewables: Comparing moment matching and stratified scenario generation sampling," Applied Energy, Elsevier, vol. 302(C).
    9. Backe, Stian & Zwickl-Bernhard, Sebastian & Schwabeneder, Daniel & Auer, Hans & Korpås, Magnus & Tomasgard, Asgeir, 2022. "Impact of energy communities on the European electricity and heating system decarbonization pathway: Comparing local and global flexibility responses," Applied Energy, Elsevier, vol. 323(C).
    10. Giovanni Pantuso & Trine K. Boomsma, 2020. "On the number of stages in multistage stochastic programs," Annals of Operations Research, Springer, vol. 292(2), pages 581-603, September.
    11. Francesca Maggioni & Elisabetta Allevi & Asgeir Tomasgard, 2020. "Bounds in multi-horizon stochastic programs," Annals of Operations Research, Springer, vol. 292(2), pages 605-625, September.
    12. Zhang, Hongyu & Tomasgard, Asgeir & Knudsen, Brage Rugstad & Svendsen, Harald G. & Bakker, Steffen J. & Grossmann, Ignacio E., 2022. "Modelling and analysis of offshore energy hubs," Energy, Elsevier, vol. 261(PA).
    13. Bordin, Chiara & Mishra, Sambeet & Palu, Ivo, 2021. "A multihorizon approach for the reliability oriented network restructuring problem, considering learning effects, construction time, and cables maintenance costs," Renewable Energy, Elsevier, vol. 168(C), pages 878-895.
    14. Gatzert, Nadine & Martin, Alexander & Schmidt, Martin & Seith, Benjamin & Vogl, Nikolai, 2021. "Portfolio optimization with irreversible long-term investments in renewable energy under policy risk: A mixed-integer multistage stochastic model and a moving-horizon approach," European Journal of Operational Research, Elsevier, vol. 290(2), pages 734-748.
    15. Fodstad, Marte & Crespo del Granado, Pedro & Hellemo, Lars & Knudsen, Brage Rugstad & Pisciella, Paolo & Silvast, Antti & Bordin, Chiara & Schmidt, Sarah & Straus, Julian, 2022. "Next frontiers in energy system modelling: A review on challenges and the state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    16. Seljom, Pernille & Lindberg, Karen Byskov & Tomasgard, Asgeir & Doorman, Gerard & Sartori, Igor, 2017. "The impact of Zero Energy Buildings on the Scandinavian energy system," Energy, Elsevier, vol. 118(C), pages 284-296.
    17. Tiong, Achara & Vergara, Hector A., 2023. "Evaluation of network expansion decisions for resilient interdependent critical infrastructures with different topologies," International Journal of Critical Infrastructure Protection, Elsevier, vol. 42(C).
    18. Wim Ackooij & Debora Daniela Escobar & Martin Glanzer & Georg Ch. Pflug, 2020. "Distributionally robust optimization with multiple time scales: valuation of a thermal power plant," Computational Management Science, Springer, vol. 17(3), pages 357-385, October.
    19. Domínguez, Ruth & Vitali, Sebastiano & Carrión, Miguel & Moriggia, Vittorio, 2021. "Analysing decarbonizing strategies in the European power system applying stochastic dominance constraints," Energy Economics, Elsevier, vol. 101(C).
    20. Tan, Caixia & Yu, Min & Wang, Jing & Geng, Shiping & Niu, Dongxiao & Tan, Zhongfu, 2022. "Feasibility study on the construction of multi-energy complementary systems in rural areas—Eastern, central, and western parts of China are taken as examples," Energy, Elsevier, vol. 249(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:21:y:2024:i:1:d:10.1007_s10287-024-00510-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.