IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v12y2015i1p35-43.html
   My bibliography  Save this article

The evolution of cooperation with different fitness functions using probabilistic cellular automata

Author

Listed:
  • P. Schimit
  • B. Santos
  • C. Soares

Abstract

In this work, we use probabilistic cellular automata to model a population in which the cells represent individuals that interact with their neighbors playing a game. The games may have either the form of Prisoner’s Dilemma or Hawk-Dove (Snow-Drift, Chicken) games, and may be considered as a competition for a benefit or resource. The result of each game gives each player a payoff, which is decreased from his amount of life. The advantage of such approach is that each player plays with different individuals separately, not as a multi-player matrix game. The probability for an individual having a certain action is considered his strategy, and each action returns a payoff to individual. The purpose of the work is test different fitness functions for evaluating the generation of new individuals, which will have characters of the best adapted individuals in a neighborhood, i.e., have higher values in a fitness function. Copyright Springer-Verlag Berlin Heidelberg 2015

Suggested Citation

  • P. Schimit & B. Santos & C. Soares, 2015. "The evolution of cooperation with different fitness functions using probabilistic cellular automata," Computational Management Science, Springer, vol. 12(1), pages 35-43, January.
  • Handle: RePEc:spr:comgts:v:12:y:2015:i:1:p:35-43
    DOI: 10.1007/s10287-014-0202-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10287-014-0202-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10287-014-0202-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Levine, David K. & Pesendorfer, Wolfgang, 2007. "The evolution of cooperation through imitation," Games and Economic Behavior, Elsevier, vol. 58(2), pages 293-315, February.
    2. Dai, Qionglin & Li, Haihong & Cheng, Hongyan & Zhang, Mei & Yang, Junzhong, 2013. "The effects of nonlinear imitation probability on the evolution of cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 53-58.
    3. Daniel Friedman, 1998. "On economic applications of evolutionary game theory," Journal of Evolutionary Economics, Springer, vol. 8(1), pages 15-43.
    4. Jia, Ning & Ma, Shoufeng, 2013. "Evolution of cooperation in the snowdrift game among mobile players with random-pairing and reinforcement learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(22), pages 5700-5710.
    5. Chen, Zhuo & Gao, Jianxi & Cai, Yunze & Xu, Xiaoming, 2011. "Evolution of cooperation among mobile agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(9), pages 1615-1622.
    6. Simon DeDeo & David C Krakauer & Jessica C Flack, 2010. "Inductive Game Theory and the Dynamics of Animal Conflict," PLOS Computational Biology, Public Library of Science, vol. 6(5), pages 1-16, May.
    7. Martin J. Osborne & Ariel Rubinstein, 1994. "A Course in Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262650401, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Drew Fudenberg & David K Levine, 2016. "Whither Game Theory?," Levine's Working Paper Archive 786969000000001307, David K. Levine.
    2. Qianwen Wu & Qiangqiang Wang & Yongwu Dai, 2023. "Analysis of Strategy Selection in Third-Party Governance of Rural Environmental Pollution," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    3. Hanauske, Matthias & Kunz, Jennifer & Bernius, Steffen & König, Wolfgang, 2010. "Doves and hawks in economics revisited: An evolutionary quantum game theory based analysis of financial crises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 5084-5102.
    4. Zhong, Shiquan & Jia, Ning & Ma, Shoufeng, 2014. "Iterated snowdrift game among mobile agents with myopic expected-reward based decision rule: Numerical and analytical research," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 6-18.
    5. Dehai Liu & Hongyi Li & Weiguo Wang & Chuang Zhou, 2015. "Scenario forecast model of long term trends in rural labor transfer based on evolutionary games," Journal of Evolutionary Economics, Springer, vol. 25(3), pages 649-670, July.
    6. Shi, Yi & Deng, Yawen & Wang, Guoan & Xu, Jiuping, 2020. "Stackelberg equilibrium-based eco-economic approach for sustainable development of kitchen waste disposal with subsidy policy: A case study from China," Energy, Elsevier, vol. 196(C).
    7. Cheng‐Kuang Wu & Yi‐Ming Chen & Dachrahn Wu & Ching‐Lin Chi, 2020. "A Game Theory Approach for Assessment of Risk and Deployment of Police Patrols in Response to Criminal Activity in San Francisco," Risk Analysis, John Wiley & Sons, vol. 40(3), pages 534-549, March.
    8. Liang Liu & Cong Feng & Hongwei Zhang & Xuehua Zhang, 2015. "Game Analysis and Simulation of the River Basin Sustainable Development Strategy Integrating Water Emission Trading," Sustainability, MDPI, vol. 7(5), pages 1-21, April.
    9. Müller, Christoph, 2020. "Robust implementation in weakly perfect Bayesian strategies," Journal of Economic Theory, Elsevier, vol. 189(C).
    10. Hitoshi Matsushima, 2019. "Implementation without expected utility: ex-post verifiability," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 53(4), pages 575-585, December.
    11. Dasgupta Utteeyo, 2011. "Are Entry Threats Always Credible?," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 11(1), pages 1-41, December.
    12. Baran Han, 2018. "The role and welfare rationale of secondary sanctions: A theory and a case study of the US sanctions targeting Iran," Conflict Management and Peace Science, Peace Science Society (International), vol. 35(5), pages 474-502, September.
    13. Carlos Pimienta & Jianfei Shen, 2014. "On the equivalence between (quasi-)perfect and sequential equilibria," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(2), pages 395-402, May.
    14. Asheim, Geir & Søvik, Ylva, 2003. "The semantics of preference-based belief operators," Memorandum 05/2003, Oslo University, Department of Economics.
    15. Zhang, Liming & Li, Haihong & Dai, Qionglin & Yang, Junzhong, 2022. "Migration based on environment comparison promotes cooperation in evolutionary games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    16. Wang, Yafeng & Graham, Brett, 2009. "Generalized Maximum Entropy estimation of discrete sequential move games of perfect information," MPRA Paper 21331, University Library of Munich, Germany.
    17. Karbowski, Adam, 2011. "O kilku modelach samolubnego karania w ekonomii behawioralnej [Evolution of altruism in the light of behavioral economics]," MPRA Paper 69604, University Library of Munich, Germany.
    18. Ricardo F. Reis & Phillip C. Stocken, 2007. "Strategic Consequences of Historical Cost and Fair Value Measurements," Contemporary Accounting Research, John Wiley & Sons, vol. 24(2), pages 557-584, June.
    19. Costello, Christopher & Molina, Renato, 2021. "Transboundary marine protected areas," Resource and Energy Economics, Elsevier, vol. 65(C).
    20. Liu, Jicheng & Sun, Jiakang & Yuan, Hanying & Su, Yihan & Feng, Shuxian & Lu, Chaoran, 2022. "Behavior analysis of photovoltaic-storage-use value chain game evolution in blockchain environment," Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:12:y:2015:i:1:p:35-43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.