IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v11y2014i4p341-364.html
   My bibliography  Save this article

Calibrating probability distributions with convex-concave-convex functions: application to CDO pricing

Author

Listed:
  • Alexander Veremyev
  • Peter Tsyurmasto
  • Stan Uryasev
  • R. Rockafellar

Abstract

This paper considers a class of functions referred to as convex-concave-convex (CCC) functions to calibrate unimodal or multimodal probability distributions. In discrete case, this class of functions can be expressed by a system of linear constraints and incorporated into an optimization problem. We use CCC functions for calibrating a risk-neutral probability distribution of obligors default intensities (hazard rates) in collateral debt obligations (CDO). The optimal distribution is calculated by maximizing the entropy function with no-arbitrage constraints given by bid and ask prices of CDO tranches. Such distribution reflects the views of market participants on the future market environments. We provide an explanation of why CCC functions may be applicable for capturing a non-data information about the considered distribution. The numerical experiments conducted on market quotes for the iTraxx index with different maturities and starting dates support our ideas and demonstrate that the proposed approach has stable performance. Distribution generalizations with multiple humps and their applications in credit risk are also discussed. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Alexander Veremyev & Peter Tsyurmasto & Stan Uryasev & R. Rockafellar, 2014. "Calibrating probability distributions with convex-concave-convex functions: application to CDO pricing," Computational Management Science, Springer, vol. 11(4), pages 341-364, October.
  • Handle: RePEc:spr:comgts:v:11:y:2014:i:4:p:341-364
    DOI: 10.1007/s10287-013-0176-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10287-013-0176-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10287-013-0176-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marco Avellaneda, 1998. "Minimum-Relative-Entropy Calibration of Asset-Pricing Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 1(04), pages 447-472.
    2. Igor Halperin, 2009. "Implied Multi-Factor Model for Bespoke CDO Tranches and other Portfolio Credit Derivatives," Papers 0910.2696, arXiv.org.
    3. Jackwerth, Jens Carsten & Rubinstein, Mark, 1996. "Recovering Probability Distributions from Option Prices," Journal of Finance, American Finance Association, vol. 51(5), pages 1611-1632, December.
    4. Bhupinder Bahra, 1997. "Implied risk-neutral probability density functions from option prices: theory and application," Bank of England working papers 66, Bank of England.
    5. Michael A. H. Dempster & Elena A. Medova & Seung W. Yang, 2007. "Empirical Copulas For Cdo Tranche Pricing Using Relative Entropy," World Scientific Book Chapters, in: Alexander Lipton & Andrew Rennie (ed.), Credit Correlation Life After Copulas, chapter 5, pages 87-109, World Scientific Publishing Co. Pte. Ltd..
    6. Monteiro, Ana Margarida & Tutuncu, Reha H. & Vicente, Luis N., 2008. "Recovering risk-neutral probability density functions from options prices using cubic splines and ensuring nonnegativity," European Journal of Operational Research, Elsevier, vol. 187(2), pages 525-542, June.
    7. Campa, Jose M. & Chang, P. H. Kevin & Reider, Robert L., 1998. "Implied exchange rate distributions: evidence from OTC option markets1," Journal of International Money and Finance, Elsevier, vol. 17(1), pages 117-160, February.
    8. Ruijun Bu & Kaddour Hadri, 2007. "Estimating option implied risk-neutral densities using spline and hypergeometric functions," Econometrics Journal, Royal Economic Society, vol. 10(2), pages 216-244, July.
    9. Miller, Douglas J. & Liu, Wei-han, 2002. "On the recovery of joint distributions from limited information," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 259-274, March.
    10. Golan, Amos, 2002. "Information and Entropy Econometrics--Editor's View," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 1-15, March.
    11. Jackwerth, Jens Carsten, 1999. "Option Implied Risk-Neutral Distributions and Implied Binomial Trees: A Literature Review," MPRA Paper 11634, University Library of Munich, Germany.
    12. Michael A. H. Dempster & Elena A. Medova & Seung W. Yang, 2007. "Empirical Copulas For Cdo Tranche Pricing Using Relative Entropy," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 679-701.
    13. Michael A. H. Dempster & Elena A. Medova & Seung W. Yang, 2007. "Erratum: "Empirical Copulas For Cdo Tranche Pricing Using Relative Entropy"," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 10(07), pages 1255-1260.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ba Chu & Stephen Satchell, 2016. "Recovering the Most Entropic Copulas from Preliminary Knowledge of Dependence," Econometrics, MDPI, vol. 4(2), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    2. Ba Chu & Stephen Satchell, 2016. "Recovering the Most Entropic Copulas from Preliminary Knowledge of Dependence," Econometrics, MDPI, vol. 4(2), pages 1-21, March.
    3. Taboga, Marco, 2016. "Option-implied probability distributions: How reliable? How jagged?," International Review of Economics & Finance, Elsevier, vol. 45(C), pages 453-469.
    4. Arindam Kundu & Sumit Kumar & Nutan Kumar Tomar, 2019. "Option Implied Risk-Neutral Density Estimation: A Robust and Flexible Method," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 705-728, August.
    5. Vahamaa, Sami, 2005. "Option-implied asymmetries in bond market expectations around monetary policy actions of the ECB," Journal of Economics and Business, Elsevier, vol. 57(1), pages 23-38.
    6. Silvia Muzzioli, 2010. "Towards a volatility index for the Italian stock market," Centro Studi di Banca e Finanza (CEFIN) (Center for Studies in Banking and Finance) 10091, Universita di Modena e Reggio Emilia, Dipartimento di Economia "Marco Biagi".
    7. Luiz Vitiello & Ser-Huang Poon, 2014. "Non-monotonic pricing kernel and an extended class of mixture of distributions for option pricing," Review of Derivatives Research, Springer, vol. 17(2), pages 241-259, July.
    8. Silvia Muzzioli, 2013. "The Information Content of Option-Based Forecasts of Volatility: Evidence from the Italian Stock Market," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 3(01), pages 1-46.
    9. Seung Hwan Lee, 2014. "Estimation of risk-neutral measures using quartic B-spline cumulative distribution functions with power tails," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1857-1879, October.
    10. Bondarenko, Oleg, 2003. "Estimation of risk-neutral densities using positive convolution approximation," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 85-112.
    11. Monteiro, Ana Margarida & Tutuncu, Reha H. & Vicente, Luis N., 2008. "Recovering risk-neutral probability density functions from options prices using cubic splines and ensuring nonnegativity," European Journal of Operational Research, Elsevier, vol. 187(2), pages 525-542, June.
    12. Wael Bahsoun & Pawel Góra & Silvia Mayoral & Manuel Morales, 2006. "Random Dynamics and Finance: Constructing Implied Binomial Trees from a Predetermined Stationary Den," Faculty Working Papers 13/06, School of Economics and Business Administration, University of Navarra.
    13. Hardeep Singh Mundi, 2023. "Risk neutral variances to compute expected returns using data from S&P BSE 100 firms—a replication study," Management Review Quarterly, Springer, vol. 73(1), pages 215-230, February.
    14. Salazar Celis, Oliver & Liang, Lingzhi & Lemmens, Damiaan & Tempère, Jacques & Cuyt, Annie, 2015. "Determining and benchmarking risk neutral distributions implied from option prices," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 372-387.
    15. Xixuan Han & Boyu Wei & Hailiang Yang, 2018. "Index Options And Volatility Derivatives In A Gaussian Random Field Risk-Neutral Density Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(04), pages 1-41, June.
    16. Ruijun Bu & Kaddour Hadri, 2005. "Estimating the Risk Neutral Probability Density Functions Natural Spline versus Hypergeometric Approach Using European Style Options," Working Papers 200510, University of Liverpool, Department of Economics.
    17. Datta, Deepa Dhume & Londono, Juan M. & Ross, Landon J., 2017. "Generating options-implied probability densities to understand oil market events," Energy Economics, Elsevier, vol. 64(C), pages 440-457.
    18. Martin Mandler, 2002. "Extracting Market Expectations from Option Prices: Two Case Studies in Market Perceptions of the ECB's Monetary Policy 1999/2000," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 138(II), pages 165-189, June.
    19. José L. Vilar-Zanón & Olivia Peraita-Ezcurra, 2019. "A linear goal programming method to recover risk neutral probabilities from options prices by maximum entropy," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 259-276, June.
    20. Jens Hilscher & Alon Raviv & Ricardo Reis, 2022. "Inflating Away the Public Debt? An Empirical Assessment," The Review of Financial Studies, Society for Financial Studies, vol. 35(3), pages 1553-1595.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:11:y:2014:i:4:p:341-364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.