IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v166y2021i3d10.1007_s10584-021-03141-w.html
   My bibliography  Save this article

Impact of climate change in the flow regimes of the Upper and Middle Amazon River

Author

Listed:
  • Carlos Eduardo Aguiar Souza Costa

    (Federal University of Pará (UFPA))

  • Claudio José Cavalcante Blanco

    (Federal University of Pará (UFPA))

  • José Francisco Oliveira-Júnior

    (Federal University of Alagoas (UFAL))

Abstract

The impacts on global water resources may be more intense due to climate change, making access to water more difficult and, consequently, maintaining life. In the Amazon, the effect may be even worse, as it is one of the region’s most vulnerable to these changes. Thus, the objective is to analyze future variations in the volumes and duration curves of the flow of the Amazon River to verify the hydrological response to climate changes. The daily flows observed were from the database of the National Water Agency of Brazil. Future flow data was generated for the Representative Concentration Pathways (RCPs) 6.0 and 8.5 scenarios of the Global hydrological model WaterGAP2 forced by the General Circulation Models MIROC5 and HadGEM2-ES, obtained from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) platform. The flow duration curves of the base periods were created from the last 20 years of observed data for each flow meter station, as well as the simulated base period curves (2000–2019), to compare with the curves of future scenarios (from 2020). For a more punctual analysis, decadal volumes were also analyzed. WaterGAP2 was efficient, presenting the classification “very good” for most stations analyzed according to the adopted statistical indicators. Most of the extreme flows were observed from 2080 to 2099. For WaterGAP2 (MIROC5), in most stations, volumes were below the expected decadal average for the century generally from 2020 to 2059. Increasing again after 2060 for WaterGAP2 (HadGEM2-ES) projections, the volumes are usually close or below the decadal average, with a decrease from 2060 (generally for RCP 8.5).

Suggested Citation

  • Carlos Eduardo Aguiar Souza Costa & Claudio José Cavalcante Blanco & José Francisco Oliveira-Júnior, 2021. "Impact of climate change in the flow regimes of the Upper and Middle Amazon River," Climatic Change, Springer, vol. 166(3), pages 1-22, June.
  • Handle: RePEc:spr:climat:v:166:y:2021:i:3:d:10.1007_s10584-021-03141-w
    DOI: 10.1007/s10584-021-03141-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-021-03141-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-021-03141-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soito, João Leonardo da Silva & Freitas, Marcos Aurélio Vasconcelos, 2011. "Amazon and the expansion of hydropower in Brazil: Vulnerability, impacts and possibilities for adaptation to global climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3165-3177, August.
    2. Jeremy G. Carter & John Handley & Tom Butlin & Susannah Gill, 2018. "Adapting cities to climate change – exploring the flood risk management role of green infrastructure landscapes," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 61(9), pages 1535-1552, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefano Moroni & Ward Rauws & Stefano Cozzolino, 2020. "Forms of self-organization: Urban complexity and planning implications," Environment and Planning B, , vol. 47(2), pages 220-234, February.
    2. Mercure, J.-F. & Paim, M.A. & Bocquillon, P. & Lindner, S. & Salas, P. & Martinelli, P. & Berchin, I.I. & de Andrade Guerra, J.B.S.O & Derani, C. & de Albuquerque Junior, C.L. & Ribeiro, J.M.P. & Knob, 2019. "System complexity and policy integration challenges: The Brazilian Energy- Water-Food Nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 230-243.
    3. Fátima Lima & Joana Portugal‐Pereira & André F.P. Lucena & Pedro Rochedo & Jorge Cunha & Manuel Lopes Nunes & Alexandre Salem Szklo, 2015. "Analysis of energy security and sustainability in future low carbon scenarios for Brazil," Natural Resources Forum, Blackwell Publishing, vol. 39(3-4), pages 175-190, August.
    4. Anuta, Oghenetejiri Harold & Taylor, Phil & Jones, Darren & McEntee, Tony & Wade, Neal, 2014. "An international review of the implications of regulatory and electricity market structures on the emergence of grid scale electricity storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 489-508.
    5. Sabrina McCormick, 2016. "Renewable energy in the Brazilian Amazon: The drivers of political economy and climate," WIDER Working Paper Series wp-2016-12, World Institute for Development Economic Research (UNU-WIDER).
    6. Byungsun Yang & Dongkun Lee, 2021. "Urban Green Space Arrangement for an Optimal Landscape Planning Strategy for Runoff Reduction," Land, MDPI, vol. 10(9), pages 1-12, August.
    7. Yakun Zhang & Wenzhe Tang & Colin F. Duffield & Lihai Zhang & Felix Kin Peng Hui, 2021. "Environment Management of Hydropower Development: A Case Study," Energies, MDPI, vol. 14(7), pages 1-12, April.
    8. Catolico, A.C.C. & Maestrini, M. & Strauch, J.C.M. & Giusti, F. & Hunt, J., 2021. "Socioeconomic impacts of large hydroelectric power plants in Brazil: A synthetic control assessment of Estreito hydropower plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    9. Sulaeman, Samer & Brown, Erik & Quispe-Abad, Raul & Müller, Norbert, 2021. "Floating PV system as an alternative pathway to the amazon dam underproduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Thais Faria Costa & Ivan Felipe Silva Santos & Geraldo Lúcio Tiago Filho & Regina Mambeli Barros & Rosana Teixeira Miranda, 2021. "Optimum hydropower potential study on nine Brazilian drainage basins using a numerical algorithm," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 1729-1758, February.
    11. Seung Kyum Kim & Paul Joosse & Mia M. Bennett & Terry Gevelt, 2020. "Impacts of green infrastructure on flood risk perceptions in Hong Kong," Climatic Change, Springer, vol. 162(4), pages 2277-2299, October.
    12. Susana Goytia, 2021. "Issues of Natural Resources Law for Adopting Catchment-Based Measures for Flood Risk Management in Sweden," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    13. Almeida Prado, Fernando & Athayde, Simone & Mossa, Joann & Bohlman, Stephanie & Leite, Flavia & Oliver-Smith, Anthony, 2016. "How much is enough? An integrated examination of energy security, economic growth and climate change related to hydropower expansion in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1132-1136.
    14. Oskar LECUYER & Esperanza GONZALEZ-MAHECHA & Michelle HALLACK & Morgan BAZILIAN & Adrien VOGT-SCHILB, 2019. "Committed emissions and the risk of stranded assets from power plants in Latin America and the Caribbean," Working Paper 7d9ac525-0354-46ef-aa0b-f, Agence française de développement.
    15. Andrade, André de Lima & dos Santos, Marco Aurélio, 2015. "Hydroelectric plants environmental viability: Strategic environmental assessment application in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1413-1423.
    16. Ribeiro, Alan Emanuel Duailibe & Arouca, Maurício Cardoso & Coelho, Daniel Moreira, 2016. "Electric energy generation from small-scale solar and wind power in Brazil: The influence of location, area and shape," Renewable Energy, Elsevier, vol. 85(C), pages 554-563.
    17. Barbosa, Juliana & Dias, Luís P. & Simoes, Sofia G. & Seixas, Júlia, 2020. "When is the sun going to shine for the Brazilian energy sector? A story of how modelling affects solar electricity," Renewable Energy, Elsevier, vol. 162(C), pages 1684-1702.
    18. de Faria, Felipe A.M. & Davis, Alex & Severnini, Edson & Jaramillo, Paulina, 2017. "The local socio-economic impacts of large hydropower plant development in a developing country," Energy Economics, Elsevier, vol. 67(C), pages 533-544.
    19. Laura Moretti & Giuseppe Loprencipe, 2018. "Climate Change and Transport Infrastructures: State of the Art," Sustainability, MDPI, vol. 10(11), pages 1-18, November.
    20. Branham, Jordan & Onda, Kyle & Kaza, Nikhil & BenDor, Todd K. & Salvesen, David, 2021. "How does the removal of federal subsidies affect investment in coastal protection infrastructure?," Land Use Policy, Elsevier, vol. 102(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:166:y:2021:i:3:d:10.1007_s10584-021-03141-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.