IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v164y2021i3d10.1007_s10584-021-02991-8.html
   My bibliography  Save this article

Sensitivity of projected climate impacts to climate model weighting: multi-sector analysis in eastern Africa

Author

Listed:
  • Seshagiri Rao Kolusu

    (Met Office
    University of Sussex)

  • Christian Siderius

    (London School of Economics
    Uncharted Waters Research)

  • Martin C. Todd

    (University of Sussex)

  • Ajay Bhave

    (Newcastle University)

  • Declan Conway

    (London School of Economics)

  • Rachel James

    (Oxford University Centre for the Environment)

  • Richard Washington

    (Oxford University Centre for the Environment)

  • Robel Geressu

    (University of Manchester)

  • Julien J. Harou

    (University of Manchester
    University College London)

  • Japhet J. Kashaigili

    (Sokoine University of Agriculture)

Abstract

Uncertainty in long-term projections of future climate can be substantial and presents a major challenge to climate change adaptation planning. This is especially so for projections of future precipitation in most tropical regions, at the spatial scale of many adaptation decisions in water-related sectors. Attempts have been made to constrain the uncertainty in climate projections, based on the recognised premise that not all of the climate models openly available perform equally well. However, there is no agreed ‘good practice’ on how to weight climate models. Nor is it clear to what extent model weighting can constrain uncertainty in decision-relevant climate quantities. We address this challenge, for climate projection information relevant to ‘high stakes’ investment decisions across the ‘water-energy-food’ sectors, using two case-study river basins in Tanzania and Malawi. We compare future climate risk profiles of simple decision-relevant indicators for water-related sectors, derived using hydrological and water resources models, which are driven by an ensemble of future climate model projections. In generating these ensembles, we implement a range of climate model weighting approaches, based on context-relevant climate model performance metrics and assessment. Our case-specific results show the various model weighting approaches have limited systematic effect on the spread of risk profiles. Sensitivity to climate model weighting is lower than overall uncertainty and is considerably less than the uncertainty resulting from bias correction methodologies. However, some of the more subtle effects on sectoral risk profiles from the more ‘aggressive’ model weighting approaches could be important to investment decisions depending on the decision context. For application, model weighting is justified in principle, but a credible approach should be very carefully designed and rooted in robust understanding of relevant physical processes to formulate appropriate metrics.

Suggested Citation

  • Seshagiri Rao Kolusu & Christian Siderius & Martin C. Todd & Ajay Bhave & Declan Conway & Rachel James & Richard Washington & Robel Geressu & Julien J. Harou & Japhet J. Kashaigili, 2021. "Sensitivity of projected climate impacts to climate model weighting: multi-sector analysis in eastern Africa," Climatic Change, Springer, vol. 164(3), pages 1-20, February.
  • Handle: RePEc:spr:climat:v:164:y:2021:i:3:d:10.1007_s10584-021-02991-8
    DOI: 10.1007/s10584-021-02991-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-021-02991-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-021-02991-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Rowell & Catherine Senior & Michael Vellinga & Richard Graham, 2016. "Can climate projection uncertainty be constrained over Africa using metrics of contemporary performance?," Climatic Change, Springer, vol. 134(4), pages 621-633, February.
    2. Declan Conway & Robert J. Nicholls & Sally Brown & Mark G. L. Tebboth & William Neil Adger & Bashir Ahmad & Hester Biemans & Florence Crick & Arthur F. Lutz & Ricardo Safra Campos & Mohammed Said & Ch, 2019. "The need for bottom-up assessments of climate risks and adaptation in climate-sensitive regions," Nature Climate Change, Nature, vol. 9(7), pages 503-511, July.
    3. Hurford, A.P. & Harou, J.J. & Bonzanigo, L. & Ray, P.A. & Karki, P. & Bharati, L. & Chinnasamy, P., 2020. "Efficient and robust hydropower system design under uncertainty - A demonstration in Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    4. David P. Rowell & Catherine A. Senior & Michael Vellinga & Richard J. Graham, 2016. "Can climate projection uncertainty be constrained over Africa using metrics of contemporary performance?," Climatic Change, Springer, vol. 134(4), pages 621-633, February.
    5. Patrick A. Ray & Casey M. Brown, 2015. "Confronting Climate Uncertainty in Water Resources Planning and Project Design," World Bank Publications - Books, The World Bank Group, number 22544.
    6. Christoph Baumberger & Reto Knutti & Gertrude Hirsch Hadorn, 2017. "Building confidence in climate model projections: an analysis of inferences from fit," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 8(3), May.
    7. Alistair Hunt & Paul Watkiss, 2011. "Climate change impacts and adaptation in cities: a review of the literature," Climatic Change, Springer, vol. 104(1), pages 13-49, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siderius, C. & Biemans, H. & Kashaigili, J. & Conway, D., 2022. "Water conservation can reduce future water-energy-food-environment trade-offs in a medium-sized African river basin," Agricultural Water Management, Elsevier, vol. 266(C).
    2. Ma, Y. & Li, Y.P. & Huang, G.H., 2023. "Planning China’s non-deterministic energy system (2021–2060) to achieve carbon neutrality," Applied Energy, Elsevier, vol. 334(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitri Defrance & Benjamin Sultan & Mathieu Castets & Adjoua Moise Famien & Christian Baron, 2020. "Impact of Climate Change in West Africa on Cereal Production Per Capita in 2050," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    2. Ambarish V. Karmalkar & Jeanne M. Thibeault & Alexander M. Bryan & Anji Seth, 2019. "Identifying credible and diverse GCMs for regional climate change studies—case study: Northeastern United States," Climatic Change, Springer, vol. 154(3), pages 367-386, June.
    3. Antje Otto & Kristine Kern & Wolfgang Haupt & Peter Eckersley & Annegret H. Thieken, 2021. "Ranking local climate policy: assessing the mitigation and adaptation activities of 104 German cities," Climatic Change, Springer, vol. 167(1), pages 1-23, July.
    4. Dilshad Ahmad & Muhammad Afzal, 2021. "Impact of climate change on pastoralists’ resilience and sustainable mitigation in Punjab, Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11406-11426, August.
    5. Laura A. Bakkensen & Robert O. Mendelsohn, 2016. "Risk and Adaptation: Evidence from Global Hurricane Damages and Fatalities," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(3), pages 555-587.
    6. S. A. Mashi & A. I. Inkani & Oghenejeabor Obaro & A. S. Asanarimam, 2020. "Community perception, response and adaptation strategies towards flood risk in a traditional African city," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1727-1759, September.
    7. Christoph Schneider & Bianca Achilles & Hendrik Merbitz, 2014. "Urbanity and Urbanization: An Interdisciplinary Review Combining Cultural and Physical Approaches," Land, MDPI, vol. 3(1), pages 1-26, January.
    8. Sara Barron & Glenis Canete & Jeff Carmichael & David Flanders & Ellen Pond & Stephen Sheppard & Kristi Tatebe, 2012. "A Climate Change Adaptation Planning Process for Low-Lying, Communities Vulnerable to Sea Level Rise," Sustainability, MDPI, vol. 4(9), pages 1-33, September.
    9. Avri Eitan, 2021. "Promoting Renewable Energy to Cope with Climate Change—Policy Discourse in Israel," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
    10. Johnson, Katie & Breil, Margaretha, 2012. "Conceptualizing Urban Adaptation to Climate Change Findings from an Applied Adaptation Assessment Framework," Climate Change and Sustainable Development 127429, Fondazione Eni Enrico Mattei (FEEM).
    11. Amar Causevic & Matthew LoCastro & Dharish David & Sujeetha Selvakkumaran & Ã…sa Gren, 2021. "Financing resilience efforts to confront future urban and sea-level rise flooding: Are coastal megacities in Association of Southeast Asian Nations doing enough?," Environment and Planning B, , vol. 48(5), pages 989-1010, June.
    12. C. Ordóñez & P. Duinker, 2015. "Climate change vulnerability assessment of the urban forest in three Canadian cities," Climatic Change, Springer, vol. 131(4), pages 531-543, August.
    13. Kaiwen Su & Jie Ren & Chuyun Cui & Yilei Hou & Yali Wen, 2022. "Do Value Orientations and Beliefs Play a Positive Role in Shaping Personal Norms for Urban Green Space Conservation?," Land, MDPI, vol. 11(2), pages 1-15, February.
    14. Eliza Kalbarczyk & Robert Kalbarczyk, 2020. "Typology of Climate Change Adaptation Measures in Polish Cities up to 2030," Land, MDPI, vol. 9(10), pages 1-18, September.
    15. Isaac Akomea-Frimpong & Amma Kyewaa Agyekum & Alexander Baah Amoakwa & Prosper Babon-Ayeng & Fatemeh Pariafsai, 2024. "Toward the attainment of climate-smart PPP infrastructure projects: a critical review and recommendations," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 19195-19229, August.
    16. Schneider, Philipp & Walz, Ariane & Albert, Christian & Lipp, Torsten, 2021. "Ecosystem-based adaptation in cities: Use of formal and informal planning instruments," Land Use Policy, Elsevier, vol. 109(C).
    17. Gawel, Erik & Heuson, Clemens & Lehmann, Paul, 2012. "Efficient public adaptation to climate change: An investigation of drivers and barriers from a Public Choice perspective," UFZ Discussion Papers 14/2012, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    18. Johannes Klein & Sirkku Juhola & Mia Landauer, 2017. "Local authorities and the engagement of private actors in climate change adaptation," Environment and Planning C, , vol. 35(6), pages 1055-1074, September.
    19. Mohammed Basheer & Victor Nechifor & Alvaro Calzadilla & Claudia Ringler & David Hulme & Julien J. Harou, 2022. "Balancing national economic policy outcomes for sustainable development," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Scott Thacker & Scott Kelly & Raghav Pant & Jim W. Hall, 2018. "Evaluating the Benefits of Adaptation of Critical Infrastructures to Hydrometeorological Risks," Risk Analysis, John Wiley & Sons, vol. 38(1), pages 134-150, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:164:y:2021:i:3:d:10.1007_s10584-021-02991-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.