IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v164y2021i1d10.1007_s10584-021-02963-y.html
   My bibliography  Save this article

Efficient statistical approach to develop intensity-duration-frequency curves for precipitation and runoff under future climate

Author

Listed:
  • Jonathan B. Butcher

    (Tetra Tech, Inc.)

  • Tan Zi

    (San Francisco Estuary Institute)

  • Brian R. Pickard

    (Tetra Tech, Inc.)

  • Scott C. Job

    (Tetra Tech, Inc.)

  • Thomas E. Johnson

    (U.S. Environmental Protection Agency, Office of Research and Development)

  • Bryan A. Groza

    (Tetra Tech, Inc.)

Abstract

Ongoing and potential future changes in precipitation will affect water management infrastructure. Urban drainage systems are particularly vulnerable. Design standards for many stormwater practices rely on design storms based on precipitation intensity-duration-frequency (IDF) curves. In many locations, climate projections suggest relatively small changes in total precipitation volume, but increased magnitude of extreme events. We develop an approach for estimating future IDF curves that is efficient, can use widely available downscaled GCM output, and is consistent with published IDF curves for the USA that are used in local stormwater regulations and design guides. The method is GCM-agnostic and provides a relatively simple way to develop scenarios in a format directly useful to assessing risk to stormwater management infrastructure. Model biases are addressed through equidistant quantile mapping, in which the modeled change in both the location and scale of the cumulative distribution of storm events from historical to future conditions is used to adjust the extreme value fit used for IDF curve development. The approach requires only precipitation annual maxima, is readily automated, and hits a mid-point between theoretical rigor and ease of application that will be of practical use for the rapid screening of vulnerabilities across projections. We demonstrate estimation of future IDF curves at locations throughout the USA and link IDF-derived design storms to a rainfall-runoff model to evaluate the potential change in storage volume requirements for capture-based stormwater management practices by 2065.

Suggested Citation

  • Jonathan B. Butcher & Tan Zi & Brian R. Pickard & Scott C. Job & Thomas E. Johnson & Bryan A. Groza, 2021. "Efficient statistical approach to develop intensity-duration-frequency curves for precipitation and runoff under future climate," Climatic Change, Springer, vol. 164(1), pages 1-20, January.
  • Handle: RePEc:spr:climat:v:164:y:2021:i:1:d:10.1007_s10584-021-02963-y
    DOI: 10.1007/s10584-021-02963-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-021-02963-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-021-02963-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lauren M. Cook & Seth McGinnis & Constantine Samaras, 2020. "The effect of modeling choices on updating intensity-duration-frequency curves and stormwater infrastructure designs for climate change," Climatic Change, Springer, vol. 159(2), pages 289-308, March.
    2. Erle Kristvik & Birgitte Gisvold Johannessen & Tone Merete Muthanna, 2019. "Temporal Downscaling of IDF Curves Applied to Future Performance of Local Stormwater Measures," Sustainability, MDPI, vol. 11(5), pages 1-24, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Subhra Sekhar Maity & Rajib Maity, 2022. "Changing Pattern of Intensity–Duration–Frequency Relationship of Precipitation due to Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5371-5399, November.
    2. Raúl Montes-Pajuelo & Ángel M. Rodríguez-Pérez & Raúl López & César A. Rodríguez, 2024. "Analysis of Probability Distributions for Modelling Extreme Rainfall Events and Detecting Climate Change: Insights from Mathematical and Statistical Methods," Mathematics, MDPI, vol. 12(7), pages 1-24, April.
    3. Jiansheng Wu & Ying Chen & Rui Yang & Yuhao Zhao, 2020. "Exploring the Optimal Cost-Benefit Solution for a Low Impact Development Layout by Zoning, as Well as Considering the Inundation Duration and Inundation Depth," Sustainability, MDPI, vol. 12(12), pages 1-21, June.
    4. Andrés Fortunato & Helmut Herwartz & Ramón E. López & Eugenio Figueroa B., 2022. "Carbon dioxide atmospheric concentration and hydrometeorological disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 57-74, May.
    5. Yuchuan Lai & Matteo Pozzi, 2024. "Sequential learning of climate change via a physical-parameter-based state-space model and Bayesian inference," Climatic Change, Springer, vol. 177(6), pages 1-22, June.
    6. Rosanna Bonasia & Lorenzo Borselli & Paolo Madonia, 2023. "Analysis of Flow and Land Use on the Hydraulic Structure of Southeast Mexico City: Implications on Flood and Runoff," Land, MDPI, vol. 12(6), pages 1-21, May.
    7. Yaning Qiao & Eshan Dave & Tony Parry & Omar Valle & Lingyun Mi & Guodong Ni & Zhenmin Yuan & Yuefeng Zhu, 2019. "Life Cycle Costs Analysis of Reclaimed Asphalt Pavement (RAP) Under Future Climate," Sustainability, MDPI, vol. 11(19), pages 1-16, September.
    8. Shadi Arfa & Mohsen Nasseri & Hassan Tavakol-Davani, 2021. "Comparing the Effects of Different Daily and Sub-Daily Downscaling Approaches on the Response of Urban Stormwater Collection Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 505-533, January.
    9. Buddhi Wijesiri & Erick Bandala & An Liu & Ashantha Goonetilleke, 2020. "A Framework for Stormwater Quality Modelling under the Effects of Climate Change to Enhance Reuse," Sustainability, MDPI, vol. 12(24), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:164:y:2021:i:1:d:10.1007_s10584-021-02963-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.