IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v161y2020i3d10.1007_s10584-020-02711-8.html
   My bibliography  Save this article

Forest harvesting and the carbon debt in boreal east-central Canada

Author

Listed:
  • Jay R Malcolm

    (University of Toronto)

  • Bjart Holtsmark

    (Statistics Norway)

  • Paul W Piascik

    (University of Toronto)

Abstract

Conversion of carbon-rich, primary boreal landscapes to managed ones through clearcut-based silviculture has the potential to decrease landscape-level carbon storage and thereby incur a significant carbon debt. We calculated carbon debts and payback periods associated with production of wood pellets to replace coal, oil and natural gas in electricity generation for such landscape conversion in boreal east-central Canada. Local forest inventory information in combination with the Carbon Budget Model (CBM-CFS3) was used to estimate biomass and dead wood carbon stocks after fire or clearcutting, and resulting age- and disturbance-specific carbon stock estimates were used to populate simulated landscapes. Based on empirical information, we investigated a range of fire-return intervals in the primary landscapes (114–262 years), harvest rotation ages (80–100 years) and conversion efficiency factors (0.17–0.71 tonnes fossil fuel carbon eliminated per tonne harvested wood carbon). After a first rotation of harvesting, carbon stocks declined 33–50% relative to stocks in the natural, fire-dominated landscapes and payback periods ranged from 92 to 757 years. The type of fossil fuel had the strongest effect on payback periods: under average efficiencies, ranges were 122–207, 156–268 and 278–481 years for coal, oil and natural gas respectively. These calculations suggest that under a wide range of assumptions, clearcut-based management of boreal primary landscapes to produce wood pellets to replace fossil fuels in electricity generation will result in net emissions of greenhouse gases to the atmosphere for many decades.

Suggested Citation

  • Jay R Malcolm & Bjart Holtsmark & Paul W Piascik, 2020. "Forest harvesting and the carbon debt in boreal east-central Canada," Climatic Change, Springer, vol. 161(3), pages 433-449, August.
  • Handle: RePEc:spr:climat:v:161:y:2020:i:3:d:10.1007_s10584-020-02711-8
    DOI: 10.1007/s10584-020-02711-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-020-02711-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-020-02711-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kurz, W.A. & Dymond, C.C. & White, T.M. & Stinson, G. & Shaw, C.H. & Rampley, G.J. & Smyth, C. & Simpson, B.N. & Neilson, E.T. & Trofymow, J.A. & Metsaranta, J. & Apps, M.J., 2009. "CBM-CFS3: A model of carbon-dynamics in forestry and land-use change implementing IPCC standards," Ecological Modelling, Elsevier, vol. 220(4), pages 480-504.
    2. Bjart Holtsmark, 2012. "Harvesting in boreal forests and the biofuel carbon debt," Climatic Change, Springer, vol. 112(2), pages 415-428, May.
    3. Werner Kurz & Sarah Beukema & Michael Apps, 1998. "Carbon Budget Implications of the Transition from Natural to Managed Disturbance Regimes in Forest Landscapes," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 2(4), pages 405-421, December.
    4. Weisser, Daniel, 2007. "A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies," Energy, Elsevier, vol. 32(9), pages 1543-1559.
    5. Karl-Heinz Erb & Thomas Kastner & Christoph Plutzar & Anna Liza S. Bais & Nuno Carvalhais & Tamara Fetzel & Simone Gingrich & Helmut Haberl & Christian Lauk & Maria Niedertscheider & Julia Pongratz & , 2018. "Unexpectedly large impact of forest management and grazing on global vegetation biomass," Nature, Nature, vol. 553(7686), pages 73-76, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Parkatti, Vesa-Pekka & Tahvonen, Olli, 2021. "Economics of multifunctional forestry in the Sámi people homeland region," Journal of Environmental Economics and Management, Elsevier, vol. 110(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kristian Madsen & Niclas Scott Bentsen, 2018. "Carbon Debt Payback Time for a Biomass Fired CHP Plant—A Case Study from Northern Europe," Energies, MDPI, vol. 11(4), pages 1-12, March.
    2. Hagemann, Ulrike & Moroni, Martin T. & Shaw, Cindy H. & Kurz, Werner A. & Makeschin, Franz, 2010. "Comparing measured and modelled forest carbon stocks in high-boreal forests of harvest and natural-disturbance origin in Labrador, Canada," Ecological Modelling, Elsevier, vol. 221(5), pages 825-839.
    3. Yi, Ji Hyun & Ko, Woong & Park, Jong-Keun & Park, Hyeongon, 2018. "Impact of carbon emission constraint on design of small scale multi-energy system," Energy, Elsevier, vol. 161(C), pages 792-808.
    4. Zhang, Ruirui & Wang, Guiling & Shen, Xiaoxu & Wang, Jinfeng & Tan, Xianfeng & Feng, Shoutao & Hong, Jinglan, 2020. "Is geothermal heating environmentally superior than coal fired heating in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    5. Metsaranta, J.M. & Kurz, W.A., 2012. "Inter-annual variability of ecosystem production in boreal jack pine forests (1975–2004) estimated from tree-ring data using CBM-CFS3," Ecological Modelling, Elsevier, vol. 224(1), pages 111-123.
    6. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    7. Kumar, Indraneel & Tyner, Wallace E. & Sinha, Kumares C., 2016. "Input–output life cycle environmental assessment of greenhouse gas emissions from utility scale wind energy in the United States," Energy Policy, Elsevier, vol. 89(C), pages 294-301.
    8. Kim, Dongin & Han, Jeehoon, 2020. "Comprehensive analysis of two catalytic processes to produce formic acid from carbon dioxide," Applied Energy, Elsevier, vol. 264(C).
    9. Seidl, Rupert & Fernandes, Paulo M. & Fonseca, Teresa F. & Gillet, François & Jönsson, Anna Maria & Merganičová, Katarína & Netherer, Sigrid & Arpaci, Alexander & Bontemps, Jean-Daniel & Bugmann, Hara, 2011. "Modelling natural disturbances in forest ecosystems: a review," Ecological Modelling, Elsevier, vol. 222(4), pages 903-924.
    10. Yu, Shiwei & Wei, Yi-Ming & Guo, Haixiang & Ding, Liping, 2014. "Carbon emission coefficient measurement of the coal-to-power energy chain in China," Applied Energy, Elsevier, vol. 114(C), pages 290-300.
    11. Kallio, A.M.I. & Salminen, O. & Sievänen, R., 2016. "Forests in the Finnish low carbon scenarios," Journal of Forest Economics, Elsevier, vol. 23(C), pages 45-62.
    12. Hao, Xiaoli & Yang, Hongxing & Zhang, Guoqiang, 2008. "Trigeneration: A new way for landfill gas utilization and its feasibility in Hong Kong," Energy Policy, Elsevier, vol. 36(10), pages 3662-3673, October.
    13. Ozcan, Mustafa, 2016. "Estimation of Turkey׳s GHG emissions from electricity generation by fuel types," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 832-840.
    14. Byun, Hyunsuk & Shin, Jungwoo & Lee, Chul-Yong, 2018. "Using a discrete choice experiment to predict the penetration possibility of environmentally friendly vehicles," Energy, Elsevier, vol. 144(C), pages 312-321.
    15. Howard, B. & Waite, M. & Modi, V., 2017. "Current and near-term GHG emissions factors from electricity production for New York State and New York City," Applied Energy, Elsevier, vol. 187(C), pages 255-271.
    16. Avri Eitan, 2021. "Promoting Renewable Energy to Cope with Climate Change—Policy Discourse in Israel," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
    17. Ima Ituen & Baoxin Hu, 2024. "Assessing the Impact of Land Conversion on Carbon Stocks and GHG Emissions," Land, MDPI, vol. 13(8), pages 1-31, August.
    18. Sovacool, Benjamin K., 2008. "Valuing the greenhouse gas emissions from nuclear power: A critical survey," Energy Policy, Elsevier, vol. 36(8), pages 2940-2953, August.
    19. Bona, Kelly A. & Webster, Kara L. & Thompson, Dan K. & Hararuk, Oleksandra & Zhang, Gary & Kurz, Werner A., 2024. "Using the Canadian Model for Peatlands (CaMP) to examine greenhouse gas emissions and carbon sink strength in Canada's boreal and temperate peatlands," Ecological Modelling, Elsevier, vol. 490(C).
    20. repec:ces:ifodic:v:10:y:2012:i:4:p:19074526 is not listed on IDEAS
    21. Myrgiotis, Vasileios & Blei, Emanuel & Clement, Rob & Jones, Stephanie K. & Keane, Ben & Lee, Mark A. & Levy, Peter E. & Rees, Robert M. & Skiba, Ute M. & Smallman, Thomas Luke & Toet, Sylvia & Willia, 2020. "A model-data fusion approach to analyse carbon dynamics in managed grasslands," Agricultural Systems, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:161:y:2020:i:3:d:10.1007_s10584-020-02711-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.