IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v156y2019i1d10.1007_s10584-019-02497-4.html
   My bibliography  Save this article

Assessing the degree of hydrologic stress due to climate change

Author

Listed:
  • R. J. Nathan

    (University of Melbourne)

  • T. A. McMahon

    (University of Melbourne)

  • M. C. Peel

    (University of Melbourne)

  • A. Horne

    (University of Melbourne)

Abstract

Hydrologists are commonly involved in impact, adaption and vulnerability assessments for climate change projections. This paper presents a framework for how such assessments can better differentiate between the impacts of climate change and those of natural variability, an important differentiation as it relates to the vulnerability to water availability under change. The key concept involved is to characterize “hydrologic stress” relative to the range of behaviour encountered under baseline conditions, where the degree to which climate change causes the behaviour of a system to shift outside this baseline range provides a non-dimensional measure of stress. The concept is applicable to any system that is subject to climate forcings, though the approach is applied here to a range of examples illustrative of many environmental and engineering applications. These include hydrologic systems that are dependent on the frequency of flows above or below selected thresholds, those that are dominated by storage and those which are sensitive to the sequencing of selected flow components. The analyses illustrate that systems designed or adapted to accommodate high variability are less stressed by a given magnitude of climate impacts than those operating under more uniform conditions. The metrics characterize hydrologic stress in a manner that can facilitate comparison across different regions, or across different assets within a region. Adoption of the approach requires reliance on the use of climate ensembles that represent aleatory uncertainty under both baseline and impacted conditions, and this has implications for how the outputs of climate models are provided and utilized.

Suggested Citation

  • R. J. Nathan & T. A. McMahon & M. C. Peel & A. Horne, 2019. "Assessing the degree of hydrologic stress due to climate change," Climatic Change, Springer, vol. 156(1), pages 87-104, September.
  • Handle: RePEc:spr:climat:v:156:y:2019:i:1:d:10.1007_s10584-019-02497-4
    DOI: 10.1007/s10584-019-02497-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-019-02497-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-019-02497-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. J. Vörösmarty & P. B. McIntyre & M. O. Gessner & D. Dudgeon & A. Prusevich & P. Green & S. Glidden & S. E. Bunn & C. A. Sullivan & C. Reidy Liermann & P. M. Davies, 2010. "Global threats to human water security and river biodiversity," Nature, Nature, vol. 467(7315), pages 555-561, September.
    2. Theodore G. Shepherd & Emily Boyd & Raphael A. Calel & Sandra C. Chapman & Suraje Dessai & Ioana M. Dima-West & Hayley J. Fowler & Rachel James & Douglas Maraun & Olivia Martius & Catherine A. Senior , 2018. "Storylines: an alternative approach to representing uncertainty in physical aspects of climate change," Climatic Change, Springer, vol. 151(3), pages 555-571, December.
    3. Michelle Vliet & Fulco Ludwig & Pavel Kabat, 2013. "Global streamflow and thermal habitats of freshwater fishes under climate change," Climatic Change, Springer, vol. 121(4), pages 739-754, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrew John & Avril Horne & Rory Nathan & Michael Stewardson & J. Angus Webb & Jun Wang & N. LeRoy Poff, 2021. "Climate change and freshwater ecology: Hydrological and ecological methods of comparable complexity are needed to predict risk," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel Asumadu Sarkodie & Maruf Yakubu Ahmed & Phebe Asantewaa Owusu, 2022. "Global adaptation readiness and income mitigate sectoral climate change vulnerabilities," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-17, December.
    2. Cai, Benan & Long, Chengjun & Du, Qiaochen & Zhang, Wenchao & Hou, Yandong & Wang, Haijun & Cai, Weihua, 2023. "Analysis of a spray flash desalination system driven by low-grade waste heat with different intermittencies," Energy, Elsevier, vol. 277(C).
    3. Yang, Lin & Pang, Shujiang & Wang, Xiaoyan & Du, Yi & Huang, Jieyu & Melching, Charles S., 2021. "Optimal allocation of best management practices based on receiving water capacity constraints," Agricultural Water Management, Elsevier, vol. 258(C).
    4. Antonio J. Castro & Cristina Quintas-Soriano & Jodi Brandt & Carla L. Atkinson & Colden V. Baxter & Morey Burnham & Benis N. Egoh & Marina García-Llorente & Jason P. Julian & Berta Martín-López & Feli, 2018. "Applying Place-Based Social-Ecological Research to Address Water Scarcity: Insights for Future Research," Sustainability, MDPI, vol. 10(5), pages 1-13, May.
    5. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    6. Xinxin Liu & Xiaosheng Wang & Haiying Guo & Xiaojie An, 2021. "Benefit Allocation in Shared Water-Saving Management Contract Projects Based on Modified Expected Shapley Value," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 39-62, January.
    7. Andrew John & Avril Horne & Rory Nathan & Michael Stewardson & J. Angus Webb & Jun Wang & N. LeRoy Poff, 2021. "Climate change and freshwater ecology: Hydrological and ecological methods of comparable complexity are needed to predict risk," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    8. Rabeya Sultana Leya & Sujit Kumar Bala & Imran Hossain Newton & Md. Arif Chowdhury & Shamim Mahabubul Haque, 2022. "Water security assessment of a peri-urban area: a study in Singair Upazila of Manikganj district of Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 14106-14129, December.
    9. Morten Graversgaard & Beatrice Hedelin & Laurence Smith & Flemming Gertz & Anker Lajer Højberg & John Langford & Grit Martinez & Erik Mostert & Emilia Ptak & Heidi Peterson & Nico Stelljes & Cors Van , 2018. "Opportunities and Barriers for Water Co-Governance—A Critical Analysis of Seven Cases of Diffuse Water Pollution from Agriculture in Europe, Australia and North America," Sustainability, MDPI, vol. 10(5), pages 1-39, May.
    10. John Tzilivakis & D. Warner & A. Green & K. Lewis, 2015. "Adapting to climate change: assessing the vulnerability of ecosystem services in Europe in the context of rural development," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(4), pages 547-572, April.
    11. M. G. Hutchins & M. J. Bowes, 2018. "Balancing Water Demand Needs with Protection of River Water Quality by Minimising Stream Residence Time: an Example from the Thames, UK," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2561-2568, May.
    12. Ting Xu & Baisha Weng & Denghua Yan & Kun Wang & Xiangnan Li & Wuxia Bi & Meng Li & Xiangjun Cheng & Yinxue Liu, 2019. "Wetlands of International Importance: Status, Threats, and Future Protection," IJERPH, MDPI, vol. 16(10), pages 1-23, May.
    13. Donna, Javier & Espin-Sanchez, Jose, 2014. "The Illiquidity of Water Markets," MPRA Paper 55078, University Library of Munich, Germany.
    14. Kaiser, Nina N. & Ghermandi, Andrea & Feld, Christian K. & Hershkovitz, Yaron & Palt, Martin & Stoll, Stefan, 2021. "Societal benefits of river restoration – Implications from social media analysis," Ecosystem Services, Elsevier, vol. 50(C).
    15. Maria Carmela Aprile & Damiano Fiorillo, 2016. "Water Conservation Behavior and Environmental Concerns," Discussion Papers 6_2016, CRISEI, University of Naples "Parthenope", Italy.
    16. Teng Wang & Jingjing Yan & Jinlong Ma & Fei Li & Chaoyang Liu & Ying Cai & Si Chen & Jingjing Zeng & Yu Qi, 2018. "A Fuzzy Comprehensive Assessment and Hierarchical Management System for Urban Lake Health: A Case Study on the Lakes in Wuhan City, Hubei Province, China," IJERPH, MDPI, vol. 15(12), pages 1-16, November.
    17. Wei Yang & Junnian Song, 2019. "Depicting Flows of Embodied Water Pollutant Discharge within Production System: Case of an Undeveloped Region," Sustainability, MDPI, vol. 11(14), pages 1-15, July.
    18. Ran He & Zhen Tang & Zengchuan Dong & Shiyun Wang, 2020. "Performance Evaluation of Regional Water Environment Integrated Governance: Case Study from Henan Province, China," IJERPH, MDPI, vol. 17(7), pages 1-13, April.
    19. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    20. Yanting Zheng & Jing He & Wenxiang Zhang & Aifeng Lv, 2023. "Assessing Water Security and Coupling Coordination in the Lancang–Mekong River Basin for Sustainable Development," Sustainability, MDPI, vol. 15(24), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:156:y:2019:i:1:d:10.1007_s10584-019-02497-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.