IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v178y2024ics0960077923012341.html
   My bibliography  Save this article

Forecasting the dynamics of correlations in complex systems

Author

Listed:
  • Wu, Tao
  • Gao, Xiangyun
  • An, Feng
  • Xu, Xin
  • Kurths, Jürgen

Abstract

Investigating the correlations between time series is a fundamental approach to reveal the hidden mechanisms in complex systems. However, the estimated correlations often show time-dependent behaviors, which may create uncertainty for decision-making in various scenarios. Thus, forecasting the evolution of these varying correlations may be helpful, but it is still unsolved entirely. We bridge this gap by proposing a data-driven framework: (a) we first embed all the pairwise correlations within a complex system into multivariate correlation-based series by sliding windows; (b) we then identify two different low-dimensional representations of multivariate correlation-based series through delay embedding and dimensionality reduction; (c) finally, multistep ahead predictions of varying correlations can be achieved by training a mapping between two low-dimensional representations. Both model and real-world systems are used to illustrate our framework, including finance, neuroscience, and climate. Our framework is robust and has the potential to be used for other complex systems. Hopefully, forecasting the evolution of correlations in complex systems can be a useful complementary, since existing works mainly focus on the predictions of components within the systems.

Suggested Citation

  • Wu, Tao & Gao, Xiangyun & An, Feng & Xu, Xin & Kurths, Jürgen, 2024. "Forecasting the dynamics of correlations in complex systems," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:chsofr:v:178:y:2024:i:c:s0960077923012341
    DOI: 10.1016/j.chaos.2023.114332
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923012341
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114332?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. M. Fernandez-Fraga & M. A. Aceves-Fernandez & J. C. Pedraza-Ortega & S. Tovar-Arriaga, 2018. "Feature Extraction of EEG Signal upon BCI Systems Based on Steady-State Visual Evoked Potentials Using the Ant Colony Optimization Algorithm," Discrete Dynamics in Nature and Society, Hindawi, vol. 2018, pages 1-19, June.
    2. Jones, Paul M. & Olson, Eric, 2013. "The time-varying correlation between uncertainty, output, and inflation: Evidence from a DCC-GARCH model," Economics Letters, Elsevier, vol. 118(1), pages 33-37.
    3. Pei Chen & Rui Liu & Kazuyuki Aihara & Luonan Chen, 2020. "Autoreservoir computing for multistep ahead prediction based on the spatiotemporal information transformation," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    4. Christoffersen, Peter & Errunza, Vihang & Jacobs, Kris & Jin, Xisong, 2014. "Correlation dynamics and international diversification benefits," International Journal of Forecasting, Elsevier, vol. 30(3), pages 807-824.
    5. Dangl, Thomas & Halling, Michael, 2012. "Predictive regressions with time-varying coefficients," Journal of Financial Economics, Elsevier, vol. 106(1), pages 157-181.
    6. Nadine Mengis & David P. Keller & Wilfried Rickels & Martin Quaas & Andreas Oschlies, 2019. "Climate engineering–induced changes in correlations between Earth system variables—implications for appropriate indicator selection," Climatic Change, Springer, vol. 153(3), pages 305-322, April.
    7. Tirabassi, Giulio & Masoller, Cristina, 2022. "Correlation lags give early warning signals of approaching bifurcations," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    8. Wang, Xiaoxuan & Gao, Xiangyun & Wu, Tao & Sun, Xiaotian, 2022. "Dynamic multiscale analysis of causality among mining stock prices," Resources Policy, Elsevier, vol. 77(C).
    9. Tiziano Squartini & Guido Caldarelli & Giulio Cimini & Andrea Gabrielli & Diego Garlaschelli, 2018. "Reconstruction methods for networks: the case of economic and financial systems," Papers 1806.06941, arXiv.org.
    10. Chang, Kook-Hyun & Kim, Myung-Jig, 2001. "Jumps and time-varying correlations in daily foreign exchange rates," Journal of International Money and Finance, Elsevier, vol. 20(5), pages 611-637, October.
    11. Wu, Tao & Gao, Xiangyun & An, Sufang & Liu, Siyao, 2021. "Time-varying pattern causality inference in global stock markets," International Review of Financial Analysis, Elsevier, vol. 77(C).
    12. Wu, Tao & Gao, Xiangyun & An, Feng & Kurths, Jürgen, 2023. "The complex dynamics of correlations within chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    13. Patro, Dilip K. & Qi, Min & Sun, Xian, 2013. "A simple indicator of systemic risk," Journal of Financial Stability, Elsevier, vol. 9(1), pages 105-116.
    14. Marten Scheffer & Jordi Bascompte & William A. Brock & Victor Brovkin & Stephen R. Carpenter & Vasilis Dakos & Hermann Held & Egbert H. van Nes & Max Rietkerk & George Sugihara, 2009. "Early-warning signals for critical transitions," Nature, Nature, vol. 461(7260), pages 53-59, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Tao & An, Feng & Gao, Xiangyun & Wang, Ze, 2023. "Hidden causality between oil prices and exchange rates," Resources Policy, Elsevier, vol. 82(C).
    2. Wu, Tao & Gao, Xiangyun & An, Feng & Kurths, Jürgen, 2023. "The complex dynamics of correlations within chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    3. Ricciardi, Gianmarco & Montagna, Guido & Caldarelli, Guido & Cimini, Giulio, 2023. "Dimensional reduction of solvency contagion dynamics on financial networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    4. Wei, Yu & Wang, Yizhi & Vigne, Samuel A. & Ma, Zhenyu, 2023. "Alarming contagion effects: The dangerous ripple effect of extreme price spillovers across crude oil, carbon emission allowance, and agriculture futures markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    5. Xu, Hai-Chuan & Wang, Zhi-Yuan & Jawadi, Fredj & Zhou, Wei-Xing, 2023. "Reconstruction of international energy trade networks with given marginal data: A comparative analysis," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    6. Lee, Ming-Chih & Chiu, Chien-Liang & Lee, Yen-Hsien, 2007. "Is twin behavior of Nikkei 225 index futures the same?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 199-210.
    7. Cho-Min Lin & Yen-Hsien Lee & Chien-Liang Chiu, 2010. "Friends or enemies? Foreign investors in Taiwan," Applied Economics Letters, Taylor & Francis Journals, vol. 17(10), pages 977-982.
    8. Yi, Yongsheng & Ma, Feng & Zhang, Yaojie & Huang, Dengshi, 2019. "Forecasting stock returns with cycle-decomposed predictors," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 250-261.
    9. Carmen Orden‐Cruz & Jessica Paule‐Vianez & Júlio Lobão, 2023. "The effect of Economic Policy Uncertainty on the credit risk of US commercial banks," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(3), pages 3420-3436, July.
    10. James J Elser & Timothy J Elser & Stephen R Carpenter & William A Brock, 2014. "Regime Shift in Fertilizer Commodities Indicates More Turbulence Ahead for Food Security," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-7, May.
    11. Goodness C. Aye & Mehmet Balcilar & Rangan Gupta, 2017. "International stock return predictability: Is the role of U.S. time-varying?," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 44(1), pages 121-146, February.
    12. Chen, Yong & Da, Zhi & Huang, Dayong, 2022. "Short selling efficiency," Journal of Financial Economics, Elsevier, vol. 145(2), pages 387-408.
    13. Catania, Leopoldo & Grassi, Stefano & Ravazzolo, Francesco, 2019. "Forecasting cryptocurrencies under model and parameter instability," International Journal of Forecasting, Elsevier, vol. 35(2), pages 485-501.
    14. Amara, Tijani & Mabrouki, Mohamed, 2019. "Les normes prudentielles : étude d’impact sur la solvabilité bancaire [Prudential standards: impact study on bank solvency]," MPRA Paper 95455, University Library of Munich, Germany.
    15. Joseph P. Byrne & Dimitris Korobilis & Pinho J. Ribeiro, 2018. "On The Sources Of Uncertainty In Exchange Rate Predictability," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 59(1), pages 329-357, February.
    16. José Afonso Faias & Juan Arismendi Zambrano, 2022. "Equity Risk Premium Predictability from Cross-Sectoral Downturns [International asset allocation with regime shifts]," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 12(3), pages 808-842.
    17. Jesus Crespo Cuaresma & Ines Fortin & Jaroslava Hlouskova & Michael Obersteiner, 2024. "Regime‐dependent commodity price dynamics: A predictive analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2822-2847, November.
    18. Lyu, Chenyan & Do, Hung Xuan & Nepal, Rabindra & Jamasb, Tooraj, 2024. "Volatility spillovers and carbon price in the Nordic wholesale electricity markets," Energy Economics, Elsevier, vol. 134(C).
    19. Darrell Jiajie Tay & Chung-I Chou & Sai-Ping Li & Shang You Tee & Siew Ann Cheong, 2016. "Bubbles Are Departures from Equilibrium Housing Markets: Evidence from Singapore and Taiwan," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-13, November.
    20. Dur, Gaël & Won, Eun-Ji & Han, Jeonghoon & Lee, Jae-Seong & Souissi, Sami, 2021. "An individual-based model for evaluating post-exposure effects of UV-B radiation on zooplankton reproduction," Ecological Modelling, Elsevier, vol. 441(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:178:y:2024:i:c:s0960077923012341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.