IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v144y2017i3d10.1007_s10584-017-2025-x.html
   My bibliography  Save this article

Relative impacts of increased greenhouse gas concentrations and land cover change on the surface climate in arid and semi-arid regions of China

Author

Listed:
  • Zhongfeng Xu

    (Institute of Atmospheric Physics, Chinese Academy of Sciences)

  • Zong-Liang Yang

    (Institute of Atmospheric Physics, Chinese Academy of Sciences
    The University of Texas at Austin)

Abstract

Four dynamical downscaling simulations are performed with different combinations of land cover maps and greenhouse gas (GHG) levels using the Weather Research and Forecasting (WRF) model nested in the Community Earth System (CESM) model. A pseudo-global warming downscaling method is used to effectively separate the anthropogenic signals from the internal noises of climate models. Based on these simulations, we investigate the impacts of anthropogenic increase in GHG concentrations and land use and land cover change (LULCC) on mean climate and extreme events in the arid and semi-arid regions of China. The results suggest that increased GHG concentrations lead to significant increases in the surface air temperature at 2 m height (T2m) by 1–1.5 °C and greater increase in the warm day temperature (TX90p) than the cold day temperature (TX10p) in the arid and semi-arid regions. Moreover, precipitation increases by 30–50% in the arid region in cold season (November to March) due to the GHG-induced increase in moisture recycling rate and precipitation efficiency. LULCC leads to significant decreases in the T2m, TX90p, and TX10p by approximately 0.3 °C. The regional LULCC accounts for 66 and 68% decrease in T2m in warm and cold seasons, respectively. The rest changes in T2m results from the changes in lateral boundary condition induced by the global LULCC. In response to LULCC, both the warm and cold day temperatures show a significant decrease in cold seasons, which primarily results from the regional LULCC. LULCC-induced changes in precipitation are generally weak in the arid and semi-arid regions of China.

Suggested Citation

  • Zhongfeng Xu & Zong-Liang Yang, 2017. "Relative impacts of increased greenhouse gas concentrations and land cover change on the surface climate in arid and semi-arid regions of China," Climatic Change, Springer, vol. 144(3), pages 491-503, October.
  • Handle: RePEc:spr:climat:v:144:y:2017:i:3:d:10.1007_s10584-017-2025-x
    DOI: 10.1007/s10584-017-2025-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-017-2025-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-017-2025-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seung-Ki Min & Xuebin Zhang & Francis W. Zwiers & Gabriele C. Hegerl, 2011. "Human contribution to more-intense precipitation extremes," Nature, Nature, vol. 470(7334), pages 378-381, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zong-Liang Yang & Zhuguo Ma, 2017. "Foreword to the special issue: decadal scale drought in arid regions," Climatic Change, Springer, vol. 144(3), pages 389-390, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davor Kvočka & Roger A. Falconer & Michaela Bray, 2016. "Flood hazard assessment for extreme flood events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1569-1599, December.
    2. Ikefuji, Masako & Horii, Ryo, 2012. "Natural disasters in a two-sector model of endogenous growth," Journal of Public Economics, Elsevier, vol. 96(9-10), pages 784-796.
    3. Rei Itsukushima & Yohei Ogahara & Yuki Iwanaga & Tatsuro Sato, 2018. "Investigating the Influence of Various Stormwater Runoff Control Facilities on Runoff Control Efficiency in a Small Catchment Area," Sustainability, MDPI, vol. 10(2), pages 1-12, February.
    4. Yaolong Liu & Guorui Feng & Ye Xue & Huaming Zhang & Ruoguang Wang, 2015. "Small-scale natural disaster risk scenario analysis: a case study from the town of Shuitou, Pingyang County, Wenzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2167-2183, February.
    5. Islam, Moinul & Kotani, Koji & Managi, Shunsuke, 2016. "Climate perception and flood mitigation cooperation: A Bangladesh case study," Economic Analysis and Policy, Elsevier, vol. 49(C), pages 117-133.
    6. Hemin Sun & Valentina Krysanova & Yu Gong & Miaoni Gao & Simon Treu & Ziyan Chen & Tong Jiang, 2024. "The recent trends of runoff in China attributable to climate change," Climatic Change, Springer, vol. 177(11), pages 1-19, November.
    7. Kaustubh Salvi & Subimal Ghosh, 2016. "Projections of Extreme Dry and Wet Spells in the 21st Century India Using Stationary and Non-stationary Standardized Precipitation Indices," Climatic Change, Springer, vol. 139(3), pages 667-681, December.
    8. Jascha Lehmann & Dim Coumou & Katja Frieler, 2015. "Increased record-breaking precipitation events under global warming," Climatic Change, Springer, vol. 132(4), pages 501-515, October.
    9. Fabian Barthel & Eric Neumayer, 2012. "A trend analysis of normalized insured damage from natural disasters," Climatic Change, Springer, vol. 113(2), pages 215-237, July.
    10. Patrick Willems, 2013. "Multidecadal oscillatory behaviour of rainfall extremes in Europe," Climatic Change, Springer, vol. 120(4), pages 931-944, October.
    11. Brennan, Timothy J., 2011. "Energy Efficiency Policy: Surveying the Puzzles," RFF Working Paper Series dp-11-27, Resources for the Future.
    12. -, 2018. "Climate Change in Central America: Potential Impacts and Public Policy Options," Sede Subregional de la CEPAL en México (Estudios e Investigaciones) 39150, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    13. Peng Jiang & Zhongbo Yu & Mahesh R. Gautam & Kumud Acharya, 2016. "The Spatiotemporal Characteristics of Extreme Precipitation Events in the Western United States," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4807-4821, October.
    14. Qiang Zhang & Jianfeng Li & Vijay Singh & Yungang Bai, 2012. "SPI-based evaluation of drought events in Xinjiang, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 481-492, October.
    15. János Mika, 2013. "Changes in weather and climate extremes: phenomenology and empirical approaches," Climatic Change, Springer, vol. 121(1), pages 15-26, November.
    16. Thomas, Vinod & Albert, Jose Ramon G. & Perez, Rosa T., 2012. "Examination of Intense Climate-related Disasters in the Asia-Pacific," Discussion Papers DP 2012-16, Philippine Institute for Development Studies.
    17. Randrianarisoa, Laingo M. & Zhang, Anming, 2019. "Adaptation to climate change effects and competition between ports: Invest now or later?," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 279-322.
    18. -, 2015. "The Economics of Climate Change in Central America: Summary 2012," Sede Subregional de la CEPAL en México (Estudios e Investigaciones) 39089, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    19. May Haggag & Ahmad S. Siam & Wael El-Dakhakhni & Paulin Coulibaly & Elkafi Hassini, 2021. "A deep learning model for predicting climate-induced disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 1009-1034, May.
    20. Abedifar, Pejman & Kashizadeh, Seyed Javad & Ongena, Steven, 2024. "Flood, farms and credit: The role of branch banking in the era of climate change," Journal of Corporate Finance, Elsevier, vol. 85(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:144:y:2017:i:3:d:10.1007_s10584-017-2025-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.