IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v139y2016i3d10.1007_s10584-016-1806-y.html
   My bibliography  Save this article

Shorter snow cover duration since 1970 in the Swiss Alps due to earlier snowmelt more than to later snow onset

Author

Listed:
  • Geoffrey Klein

    (University of Neuchatel
    WSL Swiss Federal Institute for Forest, Snow and Landscape Research)

  • Yann Vitasse

    (University of Neuchatel
    WSL Swiss Federal Institute for Forest, Snow and Landscape Research
    WSL Institute for Snow and Avalanche Research SLF)

  • Christian Rixen

    (WSL Institute for Snow and Avalanche Research SLF)

  • Christoph Marty

    (WSL Institute for Snow and Avalanche Research SLF)

  • Martine Rebetez

    (University of Neuchatel
    WSL Swiss Federal Institute for Forest, Snow and Landscape Research)

Abstract

Global warming has strong impacts on snow cover, which in turn affects ecosystems, hydrological regimes and winter tourism. Only a few long-term snow series are available worldwide, especially at high elevation. Here, we analyzed several snowpack characteristics over the period 1970–2015 at eleven meteorological stations, spanning elevations from 1139 to 2540 m asl in the Swiss Alps. Snow cover duration has significantly shortened at all sites, on average by 8.9 days decade−1. This shortening was largely driven by earlier snowmelt (on average 5.8 days decade−1) and partly by later snow onset but the latter was significant in only ~30 % of the stations. On average, the snow season now starts 12 days later and ends 26 days earlier than in 1970. Overall, the annual maximum snow depth has declined from 3.9 to 10.6 % decade−1 and was reached 7.8 ± 0.4 to 12.0 ± 0.4 days decade−1 earlier, though these trends hide a high inter-annual and decadal variability. The number of days with snow on the ground has also significantly decreased at all elevations, in all regions and for all thresholds from 1 to 100 cm. Overall, our results demonstrate a marked decline in all snowpack parameters, irrespective of elevation and region, and whether for drier or wetter locations, with a pronounced shift of the snowmelt in spring, in connection with reinforced warming during this season.

Suggested Citation

  • Geoffrey Klein & Yann Vitasse & Christian Rixen & Christoph Marty & Martine Rebetez, 2016. "Shorter snow cover duration since 1970 in the Swiss Alps due to earlier snowmelt more than to later snow onset," Climatic Change, Springer, vol. 139(3), pages 637-649, December.
  • Handle: RePEc:spr:climat:v:139:y:2016:i:3:d:10.1007_s10584-016-1806-y
    DOI: 10.1007/s10584-016-1806-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-016-1806-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-016-1806-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. T. P. Barnett & J. C. Adam & D. P. Lettenmaier, 2005. "Potential impacts of a warming climate on water availability in snow-dominated regions," Nature, Nature, vol. 438(7066), pages 303-309, November.
    2. Christoph Marty & Juliette Blanchet, 2012. "Long-term changes in annual maximum snow depth and snowfall in Switzerland based on extreme value statistics," Climatic Change, Springer, vol. 111(3), pages 705-721, April.
    3. Falk, Martin, 2010. "A dynamic panel data analysis of snow depth and winter tourism," Tourism Management, Elsevier, vol. 31(6), pages 912-924.
    4. Marc Pons & Juan López-Moreno & Martí Rosas-Casals & Èric Jover, 2015. "The vulnerability of Pyrenean ski resorts to climate-induced changes in the snowpack," Climatic Change, Springer, vol. 131(4), pages 591-605, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Vorkauf & Christoph Marty & Ansgar Kahmen & Erika Hiltbrunner, 2021. "Past and future snowmelt trends in the Swiss Alps: the role of temperature and snowpack," Climatic Change, Springer, vol. 165(3), pages 1-19, April.
    2. Emiliano Mori & Andrea Sforzi & Giuseppe Bogliani & Pietro Milanesi, 2018. "Range expansion and redefinition of a crop-raiding rodent associated with global warming and temperature increase," Climatic Change, Springer, vol. 150(3), pages 319-331, October.
    3. Marion Réveillet & Marie Dumont & Simon Gascoin & Matthieu Lafaysse & Pierre Nabat & Aurélien Ribes & Rafife Nheili & Francois Tuzet & Martin Ménégoz & Samuel Morin & Ghislain Picard & Paul Ginoux, 2022. "Black carbon and dust alter the response of mountain snow cover under climate change," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Jun Liu & Han Cheng & Xiaoqian Sun & Li Huang & Qiuchan Fan & Haolong Liu, 2017. "Effects of Climate Change on Outdoor Skating in the Bei Hai Park of Beijing and Related Adaptive Strategies," Sustainability, MDPI, vol. 9(7), pages 1-15, June.
    5. Leonardo Stucchi & Claudia Dresti & Daniele Bocchiola, 2023. "Centenary (1930–2023) climate, and snow cover changes in the Western Alps of Italy. The Ossola valley," Climatic Change, Springer, vol. 176(6), pages 1-24, June.
    6. Steiger, Robert & Posch, Eva & Tappeiner, Gottfried & Walde, Janette, 2020. "The impact of climate change on demand of ski tourism - a simulation study based on stated preferences," Ecological Economics, Elsevier, vol. 170(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aurélie Corne & Olga Goncalves & Nicolas Peypoch, 2020. "Evaluating the performance drivers of French ski resorts: A hierarchical approach," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 41(3), pages 389-405, April.
    2. Hongchao Zhang & Jordan W. Smith, 2018. "Weather and Air Quality Drive the Winter Use of Utah’s Big and Little Cottonwood Canyons," Sustainability, MDPI, vol. 10(10), pages 1-12, October.
    3. Dalei Hao & Gautam Bisht & Hailong Wang & Donghui Xu & Huilin Huang & Yun Qian & L. Ruby Leung, 2023. "A cleaner snow future mitigates Northern Hemisphere snowpack loss from warming," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Diana R. Gergel & Bart Nijssen & John T. Abatzoglou & Dennis P. Lettenmaier & Matt R. Stumbaugh, 2017. "Effects of climate change on snowpack and fire potential in the western USA," Climatic Change, Springer, vol. 141(2), pages 287-299, March.
    5. Schaefli, Bettina & Manso, Pedro & Fischer, Mauro & Huss, Matthias & Farinotti, Daniel, 2017. "The role of glacier retreat for Swiss hydropower production," Earth Arxiv 7z96d, Center for Open Science.
    6. Haiyan Fang & Zemeng Fan, 2021. "Impacts of climate and land use changes on water and sediment yields for the black soil region, northeastern China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 6259-6278, April.
    7. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    8. David Boto‐García & Antonio Alvarez & José Baños, 2021. "Modelling heterogeneous preferences for nature‐based tourism trips," Papers in Regional Science, Wiley Blackwell, vol. 100(6), pages 1625-1653, December.
    9. Donna, Javier & Espin-Sanchez, Jose, 2014. "The Illiquidity of Water Markets," MPRA Paper 55078, University Library of Munich, Germany.
    10. Gabriela Carmen Pascariu & Bogdan-Constantin Ibanescu, 2018. "Determinants and Implications of the Tourism Multiplier Effect in EU Economies. Towards a Core-Periphery Pattern?," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 20(S12), pages 982-982, November.
    11. Donna, Javier D. & Espin-Sanchez, Jose, 2018. "Are Water Markets Liquid? Evidence from Southeastern Spain," MPRA Paper 117032, University Library of Munich, Germany.
    12. Shakil Ahmad Romshoo & Jasia Bashir & Irfan Rashid, 2020. "Twenty-first century-end climate scenario of Jammu and Kashmir Himalaya, India, using ensemble climate models," Climatic Change, Springer, vol. 162(3), pages 1473-1491, October.
    13. Muhammad Arfan & Jewell Lund & Daniyal Hassan & Maaz Saleem & Aftab Ahmad, 2019. "Assessment of Spatial and Temporal Flow Variability of the Indus River," Resources, MDPI, vol. 8(2), pages 1-17, May.
    14. Guizzardi, Andrea & Pons, Flavio Maria Emanuele & Angelini, Giovanni & Ranieri, Ercolino, 2021. "Big data from dynamic pricing: A smart approach to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1049-1060.
    15. repec:hae:wpaper:2013-2 is not listed on IDEAS
    16. Carl S. Bonham & Peter Fuleky & Qianxue Zhao, 2013. "Estimating Demand Elasticities in Non-Stationary Panels: The Case of Hawaii's Tourism Industry," Working Papers 201303, University of Hawaii at Manoa, Department of Economics.
    17. Marion Réveillet & Marie Dumont & Simon Gascoin & Matthieu Lafaysse & Pierre Nabat & Aurélien Ribes & Rafife Nheili & Francois Tuzet & Martin Ménégoz & Samuel Morin & Ghislain Picard & Paul Ginoux, 2022. "Black carbon and dust alter the response of mountain snow cover under climate change," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Wei Shi & Fuwei Qiao & Liang Zhou, 2021. "Identification of Ecological Risk Zoning on Qinghai-Tibet Plateau from the Perspective of Ecosystem Service Supply and Demand," Sustainability, MDPI, vol. 13(10), pages 1-17, May.
    19. Alvaro Calzadilla & Katrin Rehdanz & Richard Betts & Pete Falloon & Andy Wiltshire & Richard Tol, 2013. "Climate change impacts on global agriculture," Climatic Change, Springer, vol. 120(1), pages 357-374, September.
    20. Zhang, Yi & Cheng, Chuntian & Yang, Tiantian & Jin, Xiaoyu & Jia, Zebin & Shen, Jianjian & Wu, Xinyu, 2022. "Assessment of climate change impacts on the hydro-wind-solar energy supply system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    21. Vimal Mishra & Reepal Shah & Amit Garg, 2016. "Climate Change in Madhya Pradesh: Indicators, Impacts and Adaptation," Working Papers id:10844, eSocialSciences.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:139:y:2016:i:3:d:10.1007_s10584-016-1806-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.