IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v132y2015i4p709-719.html
   My bibliography  Save this article

The carbon balance of reducing wildfire risk and restoring process: an analysis of 10-year post-treatment carbon dynamics in a mixed-conifer forest

Author

Listed:
  • Morgan Wiechmann
  • Matthew Hurteau
  • Malcolm North
  • George Koch
  • Lucie Jerabkova

Abstract

Forests sequester carbon from the atmosphere, helping mitigate climate change. In fire-prone forests, burn events result in direct and indirect emissions of carbon. High fire-induced tree mortality can cause a transition from a carbon sink to source, but thinning and prescribed burning can reduce fire severity and carbon loss when wildfire occurs. However, treatment implementation requires carbon removal and emissions to reduce high-severity fire risk. The carbon removed and emitted during treatment may be resequestered by subsequent tree growth, although there is much uncertainty regarding the length of time required. To assess the long-term carbon dynamics of thinning and burning treatments, we quantified the 10-year post-treatment carbon stocks and 10-year net biome productivity (NBP) from a full-factorial experiment involving three levels of thinning and two levels of burning in a mixed-conifer forest in California’s Sierra Nevada. Our results indicate that (1) the understory thin treatment, that retained large trees, quickly recovered the initial carbon emissions (NBP = 31.4 ± 4.2 Mg C ha −1 ), (2) the carbon emitted from prescribed fire in the burn-only treatment was resequestered within the historical fire return interval (NBP = 32.8 ± 3.5 Mg C ha −1 ), and (3) the most effective treatment for reducing fire risk, understory thin and burn, had negative NBP (−6.0 ± 4.5 Mg C ha −1 ) because of post-fire large tree mortality. Understory thinning and prescribed burning can help stabilize forest carbon and restore ecosystem resilience, but this requires additional emissions beyond only thinning or only burning. Retaining additional mid-sized trees may reduce the carbon impacts of understory thinning and burning. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Morgan Wiechmann & Matthew Hurteau & Malcolm North & George Koch & Lucie Jerabkova, 2015. "The carbon balance of reducing wildfire risk and restoring process: an analysis of 10-year post-treatment carbon dynamics in a mixed-conifer forest," Climatic Change, Springer, vol. 132(4), pages 709-719, October.
  • Handle: RePEc:spr:climat:v:132:y:2015:i:4:p:709-719
    DOI: 10.1007/s10584-015-1450-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-015-1450-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-015-1450-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Westerling & B. Bryant & H. Preisler & T. Holmes & H. Hidalgo & T. Das & S. Shrestha, 2011. "Climate change and growth scenarios for California wildfire," Climatic Change, Springer, vol. 109(1), pages 445-463, December.
    2. W. A. Kurz & C. C. Dymond & G. Stinson & G. J. Rampley & E. T. Neilson & A. L. Carroll & T. Ebata & L. Safranyik, 2008. "Mountain pine beetle and forest carbon feedback to climate change," Nature, Nature, vol. 452(7190), pages 987-990, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bagdon, Benjamin A. & Huang, Ching-Hsun & Dewhurst, Stephen & Meador, Andrew Sánchez, 2017. "Climate Change Constrains the Efficiency Frontier When Managing Forests to Reduce Fire Severity and Maximize Carbon Storage," Ecological Economics, Elsevier, vol. 140(C), pages 201-214.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Metsaranta, J.M. & Kurz, W.A., 2012. "Inter-annual variability of ecosystem production in boreal jack pine forests (1975–2004) estimated from tree-ring data using CBM-CFS3," Ecological Modelling, Elsevier, vol. 224(1), pages 111-123.
    2. Xie, Yalin & Lei, Xiangdong & Shi, Jingning, 2020. "Impacts of climate change on biological rotation of Larix olgensis plantations for timber production and carbon storage in northeast China using the 3-PGmix model," Ecological Modelling, Elsevier, vol. 435(C).
    3. Sohngen, Brent & Tian, Xiaohui, 2016. "Global climate change impacts on forests and markets," Forest Policy and Economics, Elsevier, vol. 72(C), pages 18-26.
    4. Tanner, Sophia & Garnache, Cloe, 2017. "The Cost of Wildfires in Heavily Urbanized Areas: A Hedonic Approach," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259167, Agricultural and Applied Economics Association.
    5. Ji Yun Lee & Fangjiao Ma & Yue Li, 2022. "Understanding homeowner proactive actions for managing wildfire risks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1525-1547, November.
    6. Ambrey, Christopher L. & Fleming, Christopher M. & Manning, Matthew, 2016. "The hedonistic cost of the Black Saturday bushfires," 2016 Conference (60th), February 2-5, 2016, Canberra, Australia 235236, Australian Agricultural and Resource Economics Society.
    7. Zhiyuan Xiang & Meifang Zhao & U. S. Ogbodo, 2020. "Accumulation of Urban Insect Pests in China: 50 Years’ Observations on Camphor Tree ( Cinnamomum camphora )," Sustainability, MDPI, vol. 12(4), pages 1-15, February.
    8. Feliu Serra-Burriel & Pedro Delicado & Fernando M. Cucchietti, 2021. "Wildfires Vegetation Recovery through Satellite Remote Sensing and Functional Data Analysis," Mathematics, MDPI, vol. 9(11), pages 1-22, June.
    9. Chubaty, Alex M. & Roitberg, Bernard D. & Li, Chao, 2009. "A dynamic host selection model for mountain pine beetle, Dendroctonus ponderosae Hopkins," Ecological Modelling, Elsevier, vol. 220(9), pages 1241-1250.
    10. Bryan K. Mignone & Matthew D. Hurteau & Yihsu Chen & Brent Sohngen, 2009. "Carbon offsets, reversal risk and US climate policy," CAMA Working Papers 2009-19, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    11. Patrick J. Comer & Jon C. Hak & Marion S. Reid & Stephanie L. Auer & Keith A. Schulz & Healy H. Hamilton & Regan L. Smyth & Matthew M. Kling, 2019. "Habitat Climate Change Vulnerability Index Applied to Major Vegetation Types of the Western Interior United States," Land, MDPI, vol. 8(7), pages 1-27, July.
    12. Keskitalo, E. Carina H. & Pettersson, Maria & Ambjörnsson, Emmeline Laszlo & Davis, Emily Jane, 2016. "Agenda-setting and framing of policy solutions for forest pests in Canada and Sweden: Avoiding beetle outbreaks?," Forest Policy and Economics, Elsevier, vol. 65(C), pages 59-68.
    13. David Turner & David Conklin & John Bolte, 2015. "Projected climate change impacts on forest land cover and land use over the Willamette River Basin, Oregon, USA," Climatic Change, Springer, vol. 133(2), pages 335-348, November.
    14. Ayaovi Locoh & Évelyne Thiffault & Simon Barnabé, 2022. "Sustainability Impact Assessment of Forest Bioenergy Value Chains in Quebec (Canada)—A ToSIA Approach," Energies, MDPI, vol. 15(18), pages 1-21, September.
    15. Huang, Cho-ying & Asner, Gregory P. & Barger, Nichole N., 2012. "Modeling regional variation in net primary production of pinyon–juniper ecosystems," Ecological Modelling, Elsevier, vol. 227(C), pages 82-92.
    16. Thavasi, V. & Ramakrishna, S., 2009. "Asia energy mixes from socio-economic and environmental perspectives," Energy Policy, Elsevier, vol. 37(11), pages 4240-4250, November.
    17. Joan P. Casas-Ruiz & Pascal Bodmer & Kelly Ann Bona & David Butman & Mathilde Couturier & Erik J. S. Emilson & Kerri Finlay & Hélène Genet & Daniel Hayes & Jan Karlsson & David Paré & Changhui Peng & , 2023. "Integrating terrestrial and aquatic ecosystems to constrain estimates of land-atmosphere carbon exchange," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    18. Ronny Rotbarth & Egbert H. Nes & Marten Scheffer & Jane Uhd Jepsen & Ole Petter Laksforsmo Vindstad & Chi Xu & Milena Holmgren, 2023. "Northern expansion is not compensating for southern declines in North American boreal forests," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Dymond, Caren Christine & Giles-Hansen, Krysta & Asante, Patrick, 2020. "The forest mitigation-adaptation nexus: Economic benefits of novel planting regimes," Forest Policy and Economics, Elsevier, vol. 113(C).
    20. David Aadland & Charles Sims & David Finnoff, 2015. "Spatial Dynamics of Optimal Management in Bioeconomic Systems," Computational Economics, Springer;Society for Computational Economics, vol. 45(4), pages 545-577, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:132:y:2015:i:4:p:709-719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.