IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v124y2014i1p133-146.html
   My bibliography  Save this article

Effect of climate change on corrosion rates of structures in Australia

Author

Listed:
  • Nayruti Trivedi
  • Murali Venkatraman
  • Clement Chu
  • Ivan Cole

Abstract

As structures built now will be expected to last well past 2064 (50 years) it is vital that the effect of climate change be considered in their design and material selection. In particular changes in the rate of corrosion of metal components must be considered. To this end this study estimates the maximum likely change in the corrosion rate for the year 2070 so it can be included in current design. Changes in corrosion are estimated for 11 coastal and inland locations in Australia. For each station the climatic data (3-hourly) in 2070 is estimated by modifying current data with probable changes based on two climate change models (CSIRO: CSIRO-Mk 3.5 and MRI: MRI-CGCM 3.2.2). The former is for high global warming rate and the later the A1FI scenario. This climatic data is then run the Corrosion “predictor” (a multi-scale process model) to predict corrosion at each location. It is found that significant changes occur with corrosion in coastal locations increasing substantially, in contrast the corrosion at inland locations will decrease moderately. The increase in coastal locations is associated with a greater build up of salt due to less frequent rain evens while the reduction in inland locations is associated with a reduction in RH and thus surface wetness. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Nayruti Trivedi & Murali Venkatraman & Clement Chu & Ivan Cole, 2014. "Effect of climate change on corrosion rates of structures in Australia," Climatic Change, Springer, vol. 124(1), pages 133-146, May.
  • Handle: RePEc:spr:climat:v:124:y:2014:i:1:p:133-146
    DOI: 10.1007/s10584-014-1099-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-014-1099-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-014-1099-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Penny Whetton & Kevin Hennessy & John Clarke & Kathleen McInnes & David Kent, 2012. "Use of Representative Climate Futures in impact and adaptation assessment," Climatic Change, Springer, vol. 115(3), pages 433-442, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taylor, Chris & Cullen, Brendan & D'Occhio, Michael & Rickards, Lauren & Eckard, Richard, 2018. "Trends in wheat yields under representative climate futures: Implications for climate adaptation," Agricultural Systems, Elsevier, vol. 164(C), pages 1-10.
    2. R. Darbyshire & P. Measham & I. Goodwin, 2016. "A crop and cultivar-specific approach to assess future winter chill risk for fruit and nut trees," Climatic Change, Springer, vol. 137(3), pages 541-556, August.
    3. Lauren Rickards & John Wiseman & Taegen Edwards & Che Biggs, 2014. "The Problem of Fit: Scenario Planning and Climate Change Adaptation in the Public Sector," Environment and Planning C, , vol. 32(4), pages 641-662, August.
    4. Buckwell, Andrew & Fleming, Christopher & Smart, James & Mackey, Brendan & Ware, Daniel & Hallgren, Willow & Sahin, Oz & Nalau, Johanna, 2018. "Valuing aggregated ecosystem services at a national and regional scale for Vanuatu using a remotely operable, rapid assessment methodology," 2018 Conference (62nd), February 7-9, 2018, Adelaide, Australia 273524, Australian Agricultural and Resource Economics Society.
    5. Drielsma, Michael J. & Love, Jamie & Williams, Kristen J. & Manion, Glenn & Saremi, Hanieh & Harwood, Tom & Robb, Janeen, 2017. "Bridging the gap between climate science and regional-scale biodiversity conservation in south-eastern Australia," Ecological Modelling, Elsevier, vol. 360(C), pages 343-362.
    6. Astrid Kause & Wändi Bruine de Bruin & Fai Fung & Andrea Taylor & Jason Lowe, 2020. "Visualizations of Projected Rainfall Change in the United Kingdom: An Interview Study about User Perceptions," Sustainability, MDPI, vol. 12(7), pages 1-21, April.
    7. Joseph Daron & Ian Macadam & Hideki Kanamaru & Thelma Cinco & Jack Katzfey & Claire Scannell & Richard Jones & Marcelino Villafuerte & Faye Cruz & Gemma Narisma & Rafaela Jane Delfino & Rodel Lasco & , 2018. "Providing future climate projections using multiple models and methods: insights from the Philippines," Climatic Change, Springer, vol. 148(1), pages 187-203, May.
    8. Ambarish V. Karmalkar & Jeanne M. Thibeault & Alexander M. Bryan & Anji Seth, 2019. "Identifying credible and diverse GCMs for regional climate change studies—case study: Northeastern United States," Climatic Change, Springer, vol. 154(3), pages 367-386, June.
    9. David J. Lawrence & Amber N. Runyon & John E. Gross & Gregor W. Schuurman & Brian W. Miller, 2021. "Divergent, plausible, and relevant climate futures for near- and long-term resource planning," Climatic Change, Springer, vol. 167(3), pages 1-20, August.
    10. Thomas Mendlik & Andreas Gobiet, 2016. "Selecting climate simulations for impact studies based on multivariate patterns of climate change," Climatic Change, Springer, vol. 135(3), pages 381-393, April.
    11. Shu Chen & Zhengen Ren & Zhi Tang & Xianrong Zhuo, 2021. "Long-Term Prediction of Weather for Analysis of Residential Building Energy Consumption in Australia," Energies, MDPI, vol. 14(16), pages 1-20, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:124:y:2014:i:1:p:133-146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.