IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v119y2013i1p63-77.html
   My bibliography  Save this article

Effects of climate variability on the distribution and fishing conditions of yellowfin tuna (Thunnus albacares) in the western Indian Ocean

Author

Listed:
  • Kuo-Wei Lan
  • Karen Evans
  • Ming-An Lee

Abstract

Variations in the abundance and distribution of pelagic tuna populations have been associated with large-scale climate indices such as the Southern Oscillation Index in the Pacific Ocean and the North Atlantic Oscillation in the Atlantic Ocean. Similarly to the Pacific and Atlantic, variability in the distribution and catch rates of tuna species have also been observed in association with the Indian Ocean Dipole (IOD), a basin-scale pattern of sea surface and subsurface temperatures that affect climate in the Indian Ocean. The environmental processes associated with the IOD that drive variability in tuna populations, however, are largely unexplored. To better understand these processes, we investigated longline catch rates of yellowfin tuna and their distributions in the western Indian Ocean in relation to IOD events, sea surface water temperatures (SST) and estimates of net primary productivity (NPP). Catch per unit effort (CPUE) was observed to be negatively correlated to the IOD with a periodicity centred around 4 years. During positive IOD events, SSTs were relatively higher, NPP was lower, CPUE decreased and catch distributions were restricted to the northern and western margins of the western Indian Ocean. During negative IOD events, lower SSTs and higher NPP were associated with increasing CPUE, particularly in the Arabian Sea and seas surrounding Madagascar, and catches expanded into central regions of the western Indian Ocean. These findings provide preliminary insights into some of the key environmental features driving the distribution of yellowfin tuna in the western Indian Ocean and associated variability in fisheries catches. Copyright The Author(s) 2013

Suggested Citation

  • Kuo-Wei Lan & Karen Evans & Ming-An Lee, 2013. "Effects of climate variability on the distribution and fishing conditions of yellowfin tuna (Thunnus albacares) in the western Indian Ocean," Climatic Change, Springer, vol. 119(1), pages 63-77, July.
  • Handle: RePEc:spr:climat:v:119:y:2013:i:1:p:63-77
    DOI: 10.1007/s10584-012-0637-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-012-0637-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-012-0637-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. H. Saji & B. N. Goswami & P. N. Vinayachandran & T. Yamagata, 1999. "A dipole mode in the tropical Indian Ocean," Nature, Nature, vol. 401(6751), pages 360-363, September.
    2. Casals J. & Jerez M. & Sotoca S., 2002. "An Exact Multivariate Model-Based Structural Decomposition," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 553-564, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Salinger & J. Bell & K. Evans & A. Hobday & V. Allain & K. Brander & P. Dexter & D. Harrison & A. Hollowed & B. Lee & R. Stefanski, 2013. "Climate and oceanic fisheries: recent observations and projections and future needs," Climatic Change, Springer, vol. 119(1), pages 213-221, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenju Cai & Yi Liu & Xiaopei Lin & Ziguang Li & Ying Zhang & David Newth, 2024. "Nonlinear country-heterogenous impact of the Indian Ocean Dipole on global economies," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Jaromir Benes & David Vavra, 2004. "Eigenvalue Decomposition of Time Series with Application to the Czech Business Cycle," Working Papers 2004/08, Czech National Bank.
    3. Weiqing Han & Lei Zhang & Gerald A. Meehl & Shoichiro Kido & Tomoki Tozuka & Yuanlong Li & Michael J. McPhaden & Aixue Hu & Anny Cazenave & Nan Rosenbloom & Gary Strand & B. Jason West & Wen Xing, 2022. "Sea level extremes and compounding marine heatwaves in coastal Indonesia," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Akio Kitoh, 2007. "Variability of Indian monsoon-ENSO relationship in a 1000-year MRI-CGCM2.2 simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 42(2), pages 261-272, August.
    5. R. S. Akhila & J. Kuttippurath & R. Rahul & A. Chakraborty, 2022. "Genesis and simultaneous occurrences of the super cyclone Kyarr and extremely severe cyclone Maha in the Arabian Sea in October 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1133-1150, September.
    6. Yadav Prasad Joshi & Eun-Hye Kim & Jong-Hun Kim & Ho Kim & Hae-Kwan Cheong, 2016. "Associations between Meteorological Factors and Aseptic Meningitis in Six Metropolitan Provinces of the Republic of Korea," IJERPH, MDPI, vol. 13(12), pages 1-12, November.
    7. D. Chiru Naik & Sagar Rohidas Chavan & P. Sonali, 2023. "Incorporating the climate oscillations in the computation of meteorological drought over India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2617-2646, July.
    8. K. Sumesh & M. Ramesh Kumar, 2013. "Tropical cyclones over north Indian Ocean during El-Niño Modoki years," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 1057-1074, September.
    9. Delle Monache, Davide & Petrella, Ivan, 2017. "Adaptive models and heavy tails with an application to inflation forecasting," International Journal of Forecasting, Elsevier, vol. 33(2), pages 482-501.
    10. Jiuwei Zhao & Ruifen Zhan & Yuqing Wang & Shang-Ping Xie & Leying Zhang & Mingrui Xu, 2024. "Lapsed El Niño impact on Atlantic and Northwest Pacific tropical cyclone activity in 2023," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Mingna Wu & Tianjun Zhou & Chao Li & Hongmei Li & Xiaolong Chen & Bo Wu & Wenxia Zhang & Lixia Zhang, 2021. "A very likely weakening of Pacific Walker Circulation in constrained near-future projections," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    12. Marrero, Gustavo A. & Puch, Luis A. & Ramos-Real, Francisco J., 2015. "Mean-variance portfolio methods for energy policy risk management," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 246-264.
    13. Netrananda Sahu & Atul Saini & Swadhin Behera & Takahiro Sayama & Sridhara Nayak & Limonlisa Sahu & Weili Duan & Ram Avtar & Masafumi Yamada & R. B. Singh & Kaoru Takara, 2020. "Impact of Indo-Pacific Climate Variability on Rice Productivity in Bihar, India," Sustainability, MDPI, vol. 12(17), pages 1-21, August.
    14. Omid Alizadeh, 2022. "Advances and challenges in climate modeling," Climatic Change, Springer, vol. 170(1), pages 1-26, January.
    15. S. Karuna Sagar & M. Rajeevan & S. Vijaya Bhaskara Rao, 2017. "On increasing monsoon rainstorms over India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1743-1757, February.
    16. Muhammad Irfan & Erry Koriyanti & Khairul Saleh & Hadi & Sri Safrina & Awaludin & Albertus Sulaiman & Hamdi Akhsan & Suhadi & Rujito Agus Suwignyo & Eunho Choi & Iskhaq Iskandar, 2024. "Dynamics of Peatland Fires in South Sumatra in 2019: Role of Groundwater Levels," Land, MDPI, vol. 13(3), pages 1-15, March.
    17. Davide Delle Monache & Ivan Petrella, 2014. "Adaptive Models and Heavy Tails," Birkbeck Working Papers in Economics and Finance 1409, Birkbeck, Department of Economics, Mathematics & Statistics.
    18. Yadav, Alka & Das, Sourish & Bakar, K. Shuvo & Chakraborti, Anirban, 2023. "Understanding the complex dynamics of climate change in south-west Australia using Machine Learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 627(C).
    19. repec:wrk:wrkemf:13 is not listed on IDEAS
    20. Adrián Cardil & Marcos Rodrigues & Mario Tapia & Renaud Barbero & Joaquin Ramírez & Cathelijne R. Stoof & Carlos Alberto Silva & Midhun Mohan & Sergio de-Miguel, 2023. "Climate teleconnections modulate global burned area," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    21. Tao Gao & Yifei Xu & Huixia Judy Wang & Qiaohong Sun & Lian Xie & Fuqiang Cao, 2022. "Combined Impacts of Climate Variability Modes on Seasonal Precipitation Extremes Over China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2411-2431, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:119:y:2013:i:1:p:63-77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.