IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v114y2012i3p509-526.html
   My bibliography  Save this article

Coupling statistical and dynamical methods for spatial downscaling of precipitation

Author

Listed:
  • Jie Chen
  • François Brissette
  • Robert Leconte

Abstract

The resolution of General Circulation Models (GCMs) is too coarse for climate change impact studies at the catchment or site-specific scales. To overcome this problem, both dynamical and statistical downscaling methods have been developed. Each downscaling method has its advantages and drawbacks, which have been described in great detail in the literature. This paper evaluates the improvement in statistical downscaling (SD) predictive power when using predictors from a Regional Climate Model (RCM) over a GCM for downscaling site-specific precipitation. Our approach uses mixed downscaling, combining both dynamic and statistical methods. Precipitation, a critical element of hydrology studies that is also much more difficult to downscale than temperature, is the only variable evaluated in this study. The SD method selected here uses a stepwise linear regression approach for precipitation quantity and occurrence (similar to the well-known Statistical Downscaling Model (SDSM) and called SDSM-like herein). In addition, a discriminant analysis (DA) was tested to generate precipitation occurrence, and a weather typing approach was used to derive statistical relationships based on weather types, and not only on a seasonal basis as is usually done. The existing data record was separated into a calibration and validation periods. To compare the relative efficiency of the SD approaches, relationships were derived at the same sites using the same predictors at a 300km scale (the National Center for Environmental Prediction (NCEP) reanalysis) and at a 45km scale with data from the limited-area Canadian Regional Climate Model (CRCM) driven by NCEP data at its boundaries. Predictably, using CRCM variables as predictors rather than NCEP data resulted in a much-improved explained variance for precipitation, although it was always less than 50 % overall. For precipitation occurrence, the SDSM-like model slightly overestimated the frequencies of wet and dry periods, while these were well-replicated by the DA-based model. Both the SDSM-like and DA-based models reproduced the percentage of wet days, but the wet and dry statuses for each day were poorly downscaled by both approaches. Overall, precipitation occurrence downscaled by the DA-based model was much better than that predicted by the SDSM-like model. Despite the added complexity, the weather typing approach was not better at downscaling precipitation than approaches without classification. Overall, despite significant improvements in precipitation occurrence prediction by the DA scheme, and even going to finer scales predictors, the SD approach tested here still explained less than 50 % of the total precipitation variance. While going to even smaller scale predictors (10–15 km) might improve results even more, such smaller scales would basically transform the direct outputs of climate models into impact models, thus negating the need for statistical downscaling approaches. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Jie Chen & François Brissette & Robert Leconte, 2012. "Coupling statistical and dynamical methods for spatial downscaling of precipitation," Climatic Change, Springer, vol. 114(3), pages 509-526, October.
  • Handle: RePEc:spr:climat:v:114:y:2012:i:3:p:509-526
    DOI: 10.1007/s10584-012-0452-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-012-0452-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-012-0452-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie Chen & Xunchang John Zhang, 2021. "Challenges and potential solutions in statistical downscaling of precipitation," Climatic Change, Springer, vol. 165(3), pages 1-19, April.
    2. Jie Chen & François P. Brissette & Daniel Caya, 2020. "Remaining error sources in bias-corrected climate model outputs," Climatic Change, Springer, vol. 162(2), pages 563-582, September.
    3. Zhang, Shuangyi & Li, Xichen, 2021. "Future projections of offshore wind energy resources in China using CMIP6 simulations and a deep learning-based downscaling method," Energy, Elsevier, vol. 217(C).
    4. Pablo Méndez-Lázaro & Frank E. Muller-Karger & Daniel Otis & Matthew J. McCarthy & Marisol Peña-Orellana, 2014. "Assessing Climate Variability Effects on Dengue Incidence in San Juan, Puerto Rico," IJERPH, MDPI, vol. 11(9), pages 1-20, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:114:y:2012:i:3:p:509-526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.