IDEAS home Printed from https://ideas.repec.org/a/spr/circec/v4y2024i3d10.1007_s43615-024-00389-z.html
   My bibliography  Save this article

EU-Focused Circular Economy Modelling of Rare Earth Element Waste in Mobile Phone Touch Screens by a System Dynamics Approach

Author

Listed:
  • Aziz Kemal Konyalıoğlu

    (University of Strathclyde)

  • Ning Zhang

    (Huazhong University of Science and Technology (HUST))

  • Ilke Bereketli

    (Galatasaray University)

Abstract

This paper aims to construct a system dynamic model elucidating the circular economy of rare earth elements (REE) in smartphones’ touch screens within the European waste supply chain of smartphones. Through extensive research and Monte Carlo simulations, we assess the economic benefits and environmental impacts of REE recycling over a ten-year period. The findings indicate that over the decade of implementing recycling practices, economic benefits surged from 1.1 to 7.8 million USD, accumulating to a total of 38.4 million USD. This progression underscores the role of effective REE waste management policies in facilitating the transition to circular economy, augmenting recycling profit, and fostering sustainable development. Moreover, the economic benefits derived from a robust recycling supply chain in 10 years contribute to sustainable manufacturing through the remanufacturing and reusing of REE in smartphones’ touch screens. We suggest that the incentivizing governmental measures should be encouraged to amplify recycling and reusing rates, while streamlining supply chain to minimize operational and collection costs. Our analysis reveals a significant increase in smartphone production levels in Europe, resulting in accumulated REE waste. However, recycling initiatives have also intensified, leading to a remarkable escalation in recycled REEs from nil to 8,130 tons over the simulation period. This substantial increase in REE recycling has contributed to sustainable manufacturing practices and generated economic benefits totaling 38.4 million USD. Furthermore, our findings highlight the pivotal role of effective recycling policies in fostering the circular economy and reducing environmental impact. Notably, economic gains primarily stem from charges levied by recyclers, emphasizing the importance of a well-functioning recycling supply chain. Monte Carlo simulations demonstrate the sensitivity of economic benefits and recycled REE quantities to variations in smartphone production and recycling rates. While economic benefits exhibit notable constancy with changes in recycling rates, smartphone production influences both recycled REEs and economic gains significantly. Overall, this study underscores the potential of REE recycling in smartphone touch screens to contribute to sustainable resource management and economic development within the European waste supply chain. By focusing on the obtained results, this research provides valuable insights for policymakers and industry stakeholders striving to enhance circular economy practices.

Suggested Citation

  • Aziz Kemal Konyalıoğlu & Ning Zhang & Ilke Bereketli, 2024. "EU-Focused Circular Economy Modelling of Rare Earth Element Waste in Mobile Phone Touch Screens by a System Dynamics Approach," Circular Economy and Sustainability, Springer, vol. 4(3), pages 1877-1898, September.
  • Handle: RePEc:spr:circec:v:4:y:2024:i:3:d:10.1007_s43615-024-00389-z
    DOI: 10.1007/s43615-024-00389-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43615-024-00389-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43615-024-00389-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duan Lu & Asad Iqbal & Feixiang Zan & Xiaoming Liu & Guanghao Chen, 2021. "Life-Cycle-Based Greenhouse Gas, Energy, and Economic Analysis of Municipal Solid Waste Management Using System Dynamics Model," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    2. Johan Rauer & Lutz Kaufmann, 2015. "Mitigating External Barriers to Implementing Green Supply Chain Management: A Grounded Theory Investigation of Green-Tech Companies' Rare Earth Metals Supply Chains," Journal of Supply Chain Management, Institute for Supply Management, vol. 51(2), pages 65-88, April.
    3. Hai-Lan Yang & Robert Innes, 2007. "Economic Incentives and Residential Waste Management in Taiwan: An Empirical Investigation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 37(3), pages 489-519, July.
    4. Ajay B. Patil & Rudolf P. W. J. Struis & Christian Ludwig, 2023. "Opportunities in Critical Rare Earth Metal Recycling Value Chains for Economic Growth with Sustainable Technological Innovations," Circular Economy and Sustainability, Springer, vol. 3(2), pages 1127-1140, June.
    5. Karishma Chaudhary & Prem Vrat, 2020. "Circular economy model of gold recovery from cell phones using system dynamics approach: a case study of India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(1), pages 173-200, January.
    6. Massari, Stefania & Ruberti, Marcello, 2013. "Rare earth elements as critical raw materials: Focus on international markets and future strategies," Resources Policy, Elsevier, vol. 38(1), pages 36-43.
    7. Yu, Jinglei & Williams, Eric & Ju, Meiting, 2010. "Analysis of material and energy consumption of mobile phones in China," Energy Policy, Elsevier, vol. 38(8), pages 4135-4141, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Walter Leal Filho & Richard Kotter & Pinar Gökçin Özuyar & Ismaila Rimi Abubakar & João Henrique Paulino Pires Eustachio & Newton R. Matandirotya, 2023. "Understanding Rare Earth Elements as Critical Raw Materials," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    2. Acuff, Kaylee & Kaffine, Daniel T., 2013. "Greenhouse gas emissions, waste and recycling policy," Journal of Environmental Economics and Management, Elsevier, vol. 65(1), pages 74-86.
    3. Machacek, Erika & Fold, Niels, 2014. "Alternative value chains for rare earths: The Anglo-deposit developers," Resources Policy, Elsevier, vol. 42(C), pages 53-64.
    4. Yang, Xiaoming & Islam, Md. Monirul & Mentel, Grzegorz & Ahmad, Ashfaq & Vasa, László, 2024. "Synergistic dynamics unveiled: Interplay between rare earth prices, clean energy innovations, and tech companies' market resilience amidst the Covid-19 pandemic and Russia-Ukraine conflict," Resources Policy, Elsevier, vol. 89(C).
    5. Li, Zheng-Zheng & Meng, Qin & Zhang, Linling & Lobont, Oana-Ramona & Shen, Yijuan, 2023. "How do rare earth prices respond to economic and geopolitical factors?," Resources Policy, Elsevier, vol. 85(PA).
    6. Wübbeke, Jost, 2013. "Rare earth elements in China: Policies and narratives of reinventing an industry," Resources Policy, Elsevier, vol. 38(3), pages 384-394.
    7. Ge, Jianping & Lei, Yalin, 2018. "Resource tax on rare earths in China: Policy evolution and market responses," Resources Policy, Elsevier, vol. 59(C), pages 291-297.
    8. Elbert Dijkgraaf & Raymond Gradus, 2015. "Efficiency Effects of Unit-Based Pricing Systems and Institutional Choices of Waste Collection," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 61(4), pages 641-658, August.
    9. ZHANG, Lu & GUO, Qing & ZHANG, Junbiao & HUANG, Yong & XIONG, Tao, 2015. "Did China׳s rare earth export policies work? — Empirical evidence from USA and Japan," Resources Policy, Elsevier, vol. 43(C), pages 82-90.
    10. Lai, Kee-hung & Wong, Christina W.Y., 2012. "Green logistics management and performance: Some empirical evidence from Chinese manufacturing exporters," Omega, Elsevier, vol. 40(3), pages 267-282.
    11. Jorge Torrubia & César Torres & Alicia Valero & Antonio Valero & Ashak Mahmud Parvez & Mohsin Sajjad & Felipe García Paz, 2024. "Applying Circular Thermoeconomics for Sustainable Metal Recovery in PCB Recycling," Energies, MDPI, vol. 17(19), pages 1-23, October.
    12. Hung M. Nguyen & George Onofrei & Dothang Truong & Simon Lockrey, 2020. "Customer green orientation and process innovation alignment: A configuration approach in the global manufacturing industry," Business Strategy and the Environment, Wiley Blackwell, vol. 29(6), pages 2498-2513, September.
    13. Thibeault, Al & Ryder, Michael & Tomomewo, Olusegun & Mann, Michael, 2023. "A review of competitive advantage theory applied to the global rare earth industry transition," Resources Policy, Elsevier, vol. 85(PA).
    14. Yang, Tian-Jian & Zhang, Yue-Jun & Huang, Jin & Peng, Ruo-Hong, 2013. "Estimating the energy saving potential of telecom operators in China," Energy Policy, Elsevier, vol. 61(C), pages 448-459.
    15. Massimiliano Mazzanti & Roberto Zoboli, 2008. "Waste Generation, Incineration and Landfill Diversion. De-coupling Trends, Socio-Economic Drivers and Policy Effectiveness in the EU," Working Papers 2008.94, Fondazione Eni Enrico Mattei.
    16. Wang, Xingxing & Li, Huajiao & Yao, Huajun & Zhu, Depeng & Liu, Nairong, 2018. "Simulation analysis of the spread of a supply crisis based on the global natural graphite trade network," Resources Policy, Elsevier, vol. 59(C), pages 200-209.
    17. V. Sathiya & M. Chinnadurai & S. Ramabalan & Andrea Appolloni, 2021. "Mobile robots and evolutionary optimization algorithms for green supply chain management in a used-car resale company," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 9110-9138, June.
    18. Raymond (R.H.J.M.) Gradus & Elbert (E.) Dijkgraaf, 2017. "Dutch Municipalities are Becoming Greener: Some Political and Institutional Explanations," Tinbergen Institute Discussion Papers 17-086/VIII, Tinbergen Institute.
    19. Tomer Fishman & Rupert J. Myers & Orlando Rios & T.E. Graedel, 2018. "Implications of Emerging Vehicle Technologies on Rare Earth Supply and Demand in the United States," Resources, MDPI, vol. 7(1), pages 1-15, January.
    20. Nwaila, Glen T. & Bourdeau, Julie E. & Zhang, Steven E. & Chipangamate, Nelson & Valodia, Imraan & Mahboob, Muhammad Ahsan & Lehohla, Thakaramahlaha & Shimaponda-Nawa, Mulundumina & Durrheim, Raymond , 2024. "A systematic framework for compilation of critical raw material lists and their importance for South Africa," Resources Policy, Elsevier, vol. 93(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:circec:v:4:y:2024:i:3:d:10.1007_s43615-024-00389-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.