IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v32y2024i4d10.1007_s10100-024-00906-3.html
   My bibliography  Save this article

Disassembly line optimization with reinforcement learning

Author

Listed:
  • Tamás Kegyes

    (HUN-REN-PE Complex Systems Monitoring Research Group
    University of Pannonia)

  • Zoltán Süle

    (HUN-REN-PE Complex Systems Monitoring Research Group
    University of Pannonia)

  • János Abonyi

    (HUN-REN-PE Complex Systems Monitoring Research Group)

Abstract

As the environmental aspects become increasingly important, the disassembly problems have become the researcher’s focus. Multiple criteria do not enable finding a general optimization method for the topic, but some heuristics and classical formulations provide effective solutions. By highlighting that disassembly problems are not the straight inverses of assembly problems and the conditions are not standard, disassembly optimization solutions require human control and supervision. Considering that Reinforcement learning (RL) methods can successfully solve complex optimization problems, we developed an RL-based solution for a fully formalized disassembly problem. There were known successful implementations of RL-based optimizers. But we integrated a novel heuristic to target a dynamically pre-filtered action space for the RL agent (dlOptRL algorithm) and hence significantly raise the efficiency of the learning path. Our algorithm belongs to the Heuristically Accelerated Reinforcement Learning (HARL) method class. We demonstrated its applicability in two use cases, but our approach can also be easily adapted for other problem types. Our article gives a detailed overview of disassembly problems and their formulation, the general RL framework and especially Q-learning techniques, and a perfect example of extending RL learning with a built-in heuristic.

Suggested Citation

  • Tamás Kegyes & Zoltán Süle & János Abonyi, 2024. "Disassembly line optimization with reinforcement learning," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 32(4), pages 1115-1142, December.
  • Handle: RePEc:spr:cejnor:v:32:y:2024:i:4:d:10.1007_s10100-024-00906-3
    DOI: 10.1007/s10100-024-00906-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10100-024-00906-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10100-024-00906-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ren, Yaping & Zhang, Chaoyong & Zhao, Fu & Xiao, Huajun & Tian, Guangdong, 2018. "An asynchronous parallel disassembly planning based on genetic algorithm," European Journal of Operational Research, Elsevier, vol. 269(2), pages 647-660.
    2. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    3. H-J Kim & D-H Lee & P Xirouchakis & O K Kwon, 2009. "A branch and bound algorithm for disassembly scheduling with assembly product structure," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(3), pages 419-430, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Botond Bertok & Péter Biró & Marianna E.-Nagy, 2024. "Overview of Hungarian operations research based on the VOCAL 2022 conference," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 32(4), pages 897-902, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria A. M. Trindade & Paulo S. A. Sousa & Maria R. A. Moreira, 2021. "Defining a storage-assignment strategy for precedence-constrained order picking," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(2), pages 146-160.
    2. Roy, Debjit & Nigam, Shobhit & de Koster, René & Adan, Ivo & Resing, Jacques, 2019. "Robot-storage zone assignment strategies in mobile fulfillment systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 119-142.
    3. Kovács, András, 2011. "Optimizing the storage assignment in a warehouse served by milkrun logistics," International Journal of Production Economics, Elsevier, vol. 133(1), pages 312-318, September.
    4. Zhanwei Tian & Guoqing Zhang, 2021. "Multi-echelon fulfillment warehouse rent and production allocation for online direct selling," Annals of Operations Research, Springer, vol. 304(1), pages 427-451, September.
    5. A. Scholz & G. Wäscher, 2017. "Order Batching and Picker Routing in manual order picking systems: the benefits of integrated routing," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(2), pages 491-520, June.
    6. Dobromir Herzog, 2021. "Human factor aspects in information security management in the traditional IT and cloud computing models," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(2), pages 93-108.
    7. Nilendra Singh Pawar & Subir S. Rao & Gajendra K. Adil, 2024. "Improving Order-Picking Performance in E-Commerce Warehouses through Entropy-Based Hierarchical Scattering," Sustainability, MDPI, vol. 16(14), pages 1-27, July.
    8. Polten, Lukas & Emde, Simon, 2022. "Multi-shuttle crane scheduling in automated storage and retrieval systems," European Journal of Operational Research, Elsevier, vol. 302(3), pages 892-908.
    9. Thierry Sauvage & Tony Cragg & Sarrah Chraibi & Oussama El Khalil Houssaini, 2018. "Running the Machine Faster: Acceleration, Humans and Warehousing," Post-Print hal-02905068, HAL.
    10. Zhang, Huili & Tong, Weitian & Xu, Yinfeng & Lin, Guohui, 2015. "The Steiner Traveling Salesman Problem with online edge blockages," European Journal of Operational Research, Elsevier, vol. 243(1), pages 30-40.
    11. Jingjing Hao & Haoming Shi & Victor Shi & Chenchen Yang, 2020. "Adoption of Automatic Warehousing Systems in Logistics Firms: A Technology–Organization–Environment Framework," Sustainability, MDPI, vol. 12(12), pages 1-14, June.
    12. Jiuh‐Biing Sheu & Tsan‐Ming Choi, 2023. "Can we work more safely and healthily with robot partners? A human‐friendly robot–human‐coordinated order fulfillment scheme," Production and Operations Management, Production and Operations Management Society, vol. 32(3), pages 794-812, March.
    13. Bhattacharya, Sourabh & Govindan, Kannan & Ghosh Dastidar, Surajit & Sharma, Preeti, 2024. "Applications of artificial intelligence in closed-loop supply chains: Systematic literature review and future research agenda," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    14. Janka Saderova & Andrea Rosova & Marian Sofranko & Peter Kacmary, 2021. "Example of Warehouse System Design Based on the Principle of Logistics," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    15. van Gils, Teun & Ramaekers, Katrien & Braekers, Kris & Depaire, Benoît & Caris, An, 2018. "Increasing order picking efficiency by integrating storage, batching, zone picking, and routing policy decisions," International Journal of Production Economics, Elsevier, vol. 197(C), pages 243-261.
    16. Rafael Diaz, 2016. "Using dynamic demand information and zoning for the storage of non-uniform density stock keeping units," International Journal of Production Research, Taylor & Francis Journals, vol. 54(8), pages 2487-2498, April.
    17. Gagliardi, Jean-Philippe & Ruiz, Angel & Renaud, Jacques, 2008. "Space allocation and stock replenishment synchronization in a distribution center," International Journal of Production Economics, Elsevier, vol. 115(1), pages 19-27, September.
    18. Jiang, Min & Huang, George Q., 2022. "Intralogistics synchronization in robotic forward-reserve warehouses for e-commerce last-mile delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    19. Suzanne, Elodie & Absi, Nabil & Borodin, Valeria, 2020. "Towards circular economy in production planning: Challenges and opportunities," European Journal of Operational Research, Elsevier, vol. 287(1), pages 168-190.
    20. Ene, Seval & Küçükoğlu, İlker & Aksoy, Aslı & Öztürk, Nursel, 2016. "A genetic algorithm for minimizing energy consumption in warehouses," Energy, Elsevier, vol. 114(C), pages 973-980.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:32:y:2024:i:4:d:10.1007_s10100-024-00906-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.