IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v32y2024i4d10.1007_s10100-023-00885-x.html
   My bibliography  Save this article

Comparison of MILP and CP models for balancing partially automated assembly lines

Author

Listed:
  • Imre Dimény

    (Budapest University of Technology and Economics)

  • Tamás Koltai

    (Budapest University of Technology and Economics)

Abstract

The objective of Assembly Line Balancing (ALB) is to find the proper assignment of tasks to workstations, taking into consideration various types of constraints and defined management goals. Early research in the field focused on solving the Simple Assembly Line Balancing problem, a basic simplified version of the general problem. As the production environment became more complex, several new ALB problem types appeared, and almost all ALB problems are NP-hard, meaning that finding a solution requires a lot of time, resources, and computational power. Methods with custom-made algorithms and generic approaches have been developed for solving these problems. While custom-made algorithms are generally more efficient, generic approaches can be more easily extended to cover other variations of the problem. Over the past few decades, automation has played an increasingly important role in various operations, although complete automation is often not possible. As a result, there is a growing need for partially automated assembly line balancing models. In these circumstances, the flexibility of a generic approach is essential. This paper compares two generic approaches: mixed integer linear programming (MILP) and constraint programming (CP), for two types of partially automated assembly line balancing problems. While CP is relatively slower in solving the simpler allocation problems, it is more efficient than MILP when an increased number of constraints is applied to the ALB and an allocation and scheduling problem needs to be solved.

Suggested Citation

  • Imre Dimény & Tamás Koltai, 2024. "Comparison of MILP and CP models for balancing partially automated assembly lines," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 32(4), pages 945-959, December.
  • Handle: RePEc:spr:cejnor:v:32:y:2024:i:4:d:10.1007_s10100-023-00885-x
    DOI: 10.1007/s10100-023-00885-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10100-023-00885-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10100-023-00885-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nick T. Thomopoulos, 2014. "Assembly Line Planning and Control," Springer Books, Springer, edition 127, number 978-3-319-01399-2, February.
    2. Peter A. Pinto & David G. Dannenbring & Basheer M. Khumawala, 1983. "Assembly Line Balancing with Processing Alternatives: An Application," Management Science, INFORMS, vol. 29(7), pages 817-830, July.
    3. Miralles, Cristobal & Garcia-Sabater, Jose Pedro & Andres, Carlos & Cardos, Manuel, 2007. "Advantages of assembly lines in Sheltered Work Centres for Disabled. A case study," International Journal of Production Economics, Elsevier, vol. 110(1-2), pages 187-197, October.
    4. Koltai, Tamás & Dimény, Imre & Gallina, Viola & Gaal, Alexander & Sepe, Chiara, 2021. "An analysis of task assignment and cycle times when robots are added to human-operated assembly lines, using mathematical programming models," International Journal of Production Economics, Elsevier, vol. 242(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mao, Zhaofang & Sun, Yiting & Fang, Kan & Huang, Dian & Zhang, Jiaxin, 2024. "Balancing and scheduling of assembly line with multi-type collaborative robots," International Journal of Production Economics, Elsevier, vol. 271(C).
    2. Araújo, Felipe F.B. & Costa, Alysson M. & Miralles, Cristóbal, 2012. "Two extensions for the ALWABP: Parallel stations and collaborative approach," International Journal of Production Economics, Elsevier, vol. 140(1), pages 483-495.
    3. Boysen, Nils & Schulze, Philipp & Scholl, Armin, 2022. "Assembly line balancing: What happened in the last fifteen years?," European Journal of Operational Research, Elsevier, vol. 301(3), pages 797-814.
    4. Koltai, Tamás & Dimény, Imre & Gallina, Viola & Gaal, Alexander & Sepe, Chiara, 2021. "An analysis of task assignment and cycle times when robots are added to human-operated assembly lines, using mathematical programming models," International Journal of Production Economics, Elsevier, vol. 242(C).
    5. Adriano Cordisco & Riccardo Melloni & Lucia Botti, 2022. "Sustainable Circular Economy for the Integration of Disadvantaged People: A Preliminary Study on the Reuse of Lithium-Ion Batteries," Sustainability, MDPI, vol. 14(13), pages 1-15, July.
    6. Battaïa, Olga & Dolgui, Alexandre, 2013. "A taxonomy of line balancing problems and their solutionapproaches," International Journal of Production Economics, Elsevier, vol. 142(2), pages 259-277.
    7. Becker, Christian & Scholl, Armin, 2006. "A survey on problems and methods in generalized assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 694-715, February.
    8. Borba, Leonardo & Ritt, Marcus & Miralles, Cristóbal, 2018. "Exact and heuristic methods for solving the Robotic Assembly Line Balancing Problem," European Journal of Operational Research, Elsevier, vol. 270(1), pages 146-156.
    9. Boysen, Nils & Fliedner, Malte, 2008. "A versatile algorithm for assembly line balancing," European Journal of Operational Research, Elsevier, vol. 184(1), pages 39-56, January.
    10. Pereira, Jordi & Ritt, Marcus, 2023. "Exact and heuristic methods for a workload allocation problem with chain precedence constraints," European Journal of Operational Research, Elsevier, vol. 309(1), pages 387-398.
    11. Chiara Natalie Focacci & Peter Mascini & Romke Veen, 2024. "Understanding the dynamic of government expenditures for disability and other social benefits: evidence from a Lotka–Volterra model for the Netherlands," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(4), pages 3403-3415, August.
    12. Armin Scholl & Nils Boysen & Malte Fliedner, 2009. "Optimally solving the alternative subgraphs assembly line balancing problem," Annals of Operations Research, Springer, vol. 172(1), pages 243-258, November.
    13. Wilbert E. Wilhelm & Radu Gadidov, 2004. "A Branch-and-Cut Approach for a Generic Multiple-Product, Assembly-System Design Problem," INFORMS Journal on Computing, INFORMS, vol. 16(1), pages 39-55, February.
    14. Anulark Pinnoi & Wilbert E. Wilhelm, 1998. "Assembly System Design: A Branch and Cut Approach," Management Science, INFORMS, vol. 44(1), pages 103-118, January.
    15. Sebnem Demirkol Akyol & Adil Baykasoğlu, 2019. "A multiple-rule based constructive randomized search algorithm for solving assembly line worker assignment and balancing problem," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 557-573, February.
    16. Jonathan Oesterle & Lionel Amodeo & Farouk Yalaoui, 2019. "A comparative study of Multi-Objective Algorithms for the Assembly Line Balancing and Equipment Selection Problem under consideration of Product Design Alternatives," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1021-1046, March.
    17. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).
    18. Gamberi, M. & Gamberini, R. & Manzini, R. & Regattieri, A., 2008. "An analytical model to evaluating the implementation of a batch-production-oriented line," International Journal of Production Economics, Elsevier, vol. 111(2), pages 729-740, February.
    19. Sriram Narayanan & Ed Terris, 2020. "Inclusive Manufacturing: The Impact of Disability Diversity on Productivity in a Work Integration Social Enterprise," Manufacturing & Service Operations Management, INFORMS, vol. 22(6), pages 1112-1130, November.
    20. Sotskov, Yuri N. & Dolgui, Alexandre & Portmann, Marie-Claude, 2006. "Stability analysis of an optimal balance for an assembly line with fixed cycle time," European Journal of Operational Research, Elsevier, vol. 168(3), pages 783-797, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:32:y:2024:i:4:d:10.1007_s10100-023-00885-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.