IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v27y2019i3d10.1007_s10100-018-0580-5.html
   My bibliography  Save this article

Interval linear programming under transformations: optimal solutions and optimal value range

Author

Listed:
  • Elif Garajová

    (Charles University)

  • Milan Hladík

    (Charles University)

  • Miroslav Rada

    (University of Economics, Prague)

Abstract

Interval linear programming provides a tool for solving real-world optimization problems under interval-valued uncertainty. Instead of approximating or estimating crisp input data, the coefficients of an interval program may perturb independently within the given lower and upper bounds. However, contrarily to classical linear programming, an interval program cannot always be converted into a desired form without affecting its properties, due to the so-called dependency problem. In this paper, we discuss the common transformations used in linear programming, such as imposing non-negativity on free variables or splitting equations into inequalities, and their effects on interval programs. Specifically, we examine changes in the set of all optimal solutions, optimal values and the optimal value range. Since some of the considered properties do not holds in the general case, we also study a special class of interval programs, in which uncertainty only affects the objective function and the right-hand-side vector. For this class, we obtain stronger results.

Suggested Citation

  • Elif Garajová & Milan Hladík & Miroslav Rada, 2019. "Interval linear programming under transformations: optimal solutions and optimal value range," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(3), pages 601-614, September.
  • Handle: RePEc:spr:cejnor:v:27:y:2019:i:3:d:10.1007_s10100-018-0580-5
    DOI: 10.1007/s10100-018-0580-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10100-018-0580-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10100-018-0580-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. Kumar & G. Panda & U.C. Gupta, 2016. "An interval linear programming approach for portfolio selection model," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 27(1/2), pages 149-164.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Figueroa–García, Juan Carlos & Hernández, Germán & Franco, Carlos, 2022. "A review on history, trends and perspectives of fuzzy linear programming," Operations Research Perspectives, Elsevier, vol. 9(C).
    2. Milan Hladík, 2023. "Various approaches to multiobjective linear programming problems with interval costs and interval weights," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 713-731, September.
    3. Carrabs, Francesco & Cerulli, Raffaele & D’Ambrosio, Ciriaco & Della Croce, Federico & Gentili, Monica, 2021. "An improved heuristic approach for the interval immune transportation problem," Omega, Elsevier, vol. 104(C).
    4. Andrej Kastrin & Janez Povh & Lidija Zadnik Stirn & Janez Žerovnik, 2021. "Methodologies and applications for resilient global development from the aspect of SDI-SOR special issues of CJOR," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(3), pages 773-790, September.
    5. Jana Novotná & Milan Hladík & Tomáš Masařík, 2020. "Duality Gap in Interval Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 565-580, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. Kumar & Jyotirmayee Behera & A. K. Bhurjee, 2022. "Solving mean-VaR portfolio selection model with interval-typed random parameter using interval analysis," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 41-77, March.
    2. P. Kumar & A. K. Bhurjee, 2022. "Multi-objective enhanced interval optimization problem," Annals of Operations Research, Springer, vol. 311(2), pages 1035-1050, April.
    3. P. Kumar & G. Panda, 2017. "Solving nonlinear interval optimization problem using stochastic programming technique," OPSEARCH, Springer;Operational Research Society of India, vol. 54(4), pages 752-765, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:27:y:2019:i:3:d:10.1007_s10100-018-0580-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.