IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v18y2010i3p365-381.html
   My bibliography  Save this article

Inverse median location problems with variable coordinates

Author

Listed:
  • Fahimeh Baroughi Bonab
  • Rainer Burkard
  • Behrooz Alizadeh

Abstract

Given n points in $${\mathbb{R}^d}$$ with nonnegative weights, the inverse 1-median problem with variable coordinates consists in changing the coordinates of the given points at minimum cost such that a prespecified point in $${\mathbb{R}^d}$$ becomes the 1-median. The cost is proportional to the increase or decrease of the corresponding point coordinate. If the distances between points are measured by the rectilinear norm, the inverse 1-median problem is $${\mathcal{NP}}$$ -hard, but it can be solved in pseudo-polynomial time. Moreover, a fully polynomial time approximation scheme exists in this case. If the point weights are assumed to be equal, the corresponding inverse problem can be reduced to d continuous knapsack problems and is therefore solvable in O(nd) time. In case that the squared Euclidean norm is used, we derive another efficient combinatorial algorithm which solves the problem in O(nd) time. It is also shown that the inverse 1-median problem endowed with the Chebyshev norm in the plane is $${\mathcal{NP}}$$ -hard. Another pseudo-polynomial algorithm is developed for this case, but it is shown that no fully polynomial time approximation scheme does exist. Copyright Springer-Verlag 2010

Suggested Citation

  • Fahimeh Baroughi Bonab & Rainer Burkard & Behrooz Alizadeh, 2010. "Inverse median location problems with variable coordinates," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 18(3), pages 365-381, September.
  • Handle: RePEc:spr:cejnor:v:18:y:2010:i:3:p:365-381
    DOI: 10.1007/s10100-009-0114-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10100-009-0114-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10100-009-0114-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elisabeth Gassner, 2008. "The inverse 1-maxian problem with edge length modification," Journal of Combinatorial Optimization, Springer, vol. 16(1), pages 50-67, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Behrooz Alizadeh & Esmaeil Afrashteh & Fahimeh Baroughi, 2018. "Combinatorial Algorithms for Some Variants of Inverse Obnoxious Median Location Problem on Tree Networks," Journal of Optimization Theory and Applications, Springer, vol. 178(3), pages 914-934, September.
    2. Kien Nguyen & Lam Anh, 2015. "Inverse $$k$$ k -centrum problem on trees with variable vertex weights," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(1), pages 19-30, August.
    3. Esmaeil Afrashteh & Behrooz Alizadeh & Fahimeh Baroughi & Kien Trung Nguyen, 2018. "Linear Time Optimal Approaches for Max-Profit Inverse 1-Median Location Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(05), pages 1-22, October.
    4. Behrooz Alizadeh & Somayeh Bakhteh, 2017. "A modified firefly algorithm for general inverse p-median location problems under different distance norms," OPSEARCH, Springer;Operational Research Society of India, vol. 54(3), pages 618-636, September.
    5. Behrooz Alizadeh & Rainer Burkard, 2013. "A linear time algorithm for inverse obnoxious center location problems on networks," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(3), pages 585-594, September.
    6. Xiucui Guan & Binwu Zhang, 2012. "Inverse 1-median problem on trees under weighted Hamming distance," Journal of Global Optimization, Springer, vol. 54(1), pages 75-82, September.
    7. Fahimeh Baroughi Bonab & Rainer Burkard & Elisabeth Gassner, 2011. "Inverse p-median problems with variable edge lengths," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 73(2), pages 263-280, April.
    8. Alizadeh, Behrooz & Afrashteh, Esmaeil, 2020. "Budget-constrained inverse median facility location problem on tree networks," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    9. Kien Trung Nguyen & Huong Nguyen-Thu & Nguyen Thanh Hung, 2018. "On the complexity of inverse convex ordered 1-median problem on the plane and on tree networks," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 88(2), pages 147-159, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Esmaeil Afrashteh & Behrooz Alizadeh & Fahimeh Baroughi, 2020. "Optimal approaches for upgrading selective obnoxious p-median location problems on tree networks," Annals of Operations Research, Springer, vol. 289(2), pages 153-172, June.
    2. Burkard, Rainer E. & Galavii, Mohammadreza & Gassner, Elisabeth, 2010. "The inverse Fermat-Weber problem," European Journal of Operational Research, Elsevier, vol. 206(1), pages 11-17, October.
    3. Behrooz Alizadeh & Somayeh Bakhteh, 2017. "A modified firefly algorithm for general inverse p-median location problems under different distance norms," OPSEARCH, Springer;Operational Research Society of India, vol. 54(3), pages 618-636, September.
    4. Gassner, Elisabeth, 2009. "Up- and downgrading the 1-center in a network," European Journal of Operational Research, Elsevier, vol. 198(2), pages 370-377, October.
    5. Xiucui Guan & Binwu Zhang, 2012. "Inverse 1-median problem on trees under weighted Hamming distance," Journal of Global Optimization, Springer, vol. 54(1), pages 75-82, September.
    6. Alizadeh, Behrooz & Afrashteh, Esmaeil, 2020. "Budget-constrained inverse median facility location problem on tree networks," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    7. Behrooz Alizadeh & Esmaeil Afrashteh & Fahimeh Baroughi, 2018. "Combinatorial Algorithms for Some Variants of Inverse Obnoxious Median Location Problem on Tree Networks," Journal of Optimization Theory and Applications, Springer, vol. 178(3), pages 914-934, September.
    8. Le Xuan Dai & Kien Trung Nguyen & Le Phuong Thao & Pham Thi Vui, 2024. "Some robust inverse median problems on trees with interval costs," Computational Management Science, Springer, vol. 21(2), pages 1-25, December.
    9. Elisabeth Gassner, 2012. "An inverse approach to convex ordered median problems in trees," Journal of Combinatorial Optimization, Springer, vol. 23(2), pages 261-273, February.
    10. Esmaeil Afrashteh & Behrooz Alizadeh & Fahimeh Baroughi & Kien Trung Nguyen, 2018. "Linear Time Optimal Approaches for Max-Profit Inverse 1-Median Location Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(05), pages 1-22, October.
    11. Ali Reza Sepasian, 2019. "Reverse 1-maxian problem with keeping existing 1-median," OPSEARCH, Springer;Operational Research Society of India, vol. 56(1), pages 1-13, March.
    12. Fahimeh Baroughi Bonab & Rainer Burkard & Elisabeth Gassner, 2011. "Inverse p-median problems with variable edge lengths," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 73(2), pages 263-280, April.
    13. Liying Kang & Yukun Cheng, 2010. "The p-maxian problem on block graphs," Journal of Combinatorial Optimization, Springer, vol. 20(2), pages 131-141, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:18:y:2010:i:3:p:365-381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.