IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v16y2008i4p407-414.html
   My bibliography  Save this article

An application of the greedy heuristic of set cover to traffic checks

Author

Listed:
  • Pál Pusztai

Abstract

Let us suppose that X is a given, finite, not empty set and $${\mathcal F}$$ is a given collection of subsets of X such that their union equals X, in other words $${\mathcal F}$$ covers X. Set cover is the problem of selecting as few as possible subsets from $${\mathcal F}$$ such that their union covers X. Max k-cover is the problem of selecting k subsets from $${\mathcal F}$$ such that their union has maximum cardinality. Both problems are NP-hard. There is a polynomial time greedy heuristic that iteratively selects the subset from $${\mathcal F}$$ that covers the largest number of yet uncovered elements. We implemented this greedy algorithm to support the planning of a checking system that is aimed to check the vehicles in a road network. We would like to answer such questions: – How many and which links are sufficient to check a given percentage of all traffic flow? – What percentage of traffic can be checked with given links? This paper defines the necessary data and basic knowledge, gives algorithms to answer the previous questions and also shows the results of an implementation in a road network that contains about 11,000 junctions, 3,000 origin–destination junctions and 26,000 links. Copyright Springer-Verlag 2008

Suggested Citation

  • Pál Pusztai, 2008. "An application of the greedy heuristic of set cover to traffic checks," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 16(4), pages 407-414, December.
  • Handle: RePEc:spr:cejnor:v:16:y:2008:i:4:p:407-414
    DOI: 10.1007/s10100-008-0067-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10100-008-0067-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10100-008-0067-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. V. Chvatal, 1979. "A Greedy Heuristic for the Set-Covering Problem," Mathematics of Operations Research, INFORMS, vol. 4(3), pages 233-235, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emre Çankaya & Ali Ekici & Okan Örsan Özener, 2023. "A two-phase heuristic algorithm for the label printing problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 110-138, April.
    2. A. Kimms & K.-C. Maassen & S. Pottbäcker, 2012. "Guiding traffic in the case of big events with spot checks on traffic and additional parking space requirements," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(4), pages 755-773, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davidov, Sreten & Pantoš, Miloš, 2017. "Planning of electric vehicle infrastructure based on charging reliability and quality of service," Energy, Elsevier, vol. 118(C), pages 1156-1167.
    2. Filipe Rodrigues & Agostinho Agra & Lars Magnus Hvattum & Cristina Requejo, 2021. "Weighted proximity search," Journal of Heuristics, Springer, vol. 27(3), pages 459-496, June.
    3. Lan, Guanghui & DePuy, Gail W. & Whitehouse, Gary E., 2007. "An effective and simple heuristic for the set covering problem," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1387-1403, February.
    4. Song, Zhe & Kusiak, Andrew, 2010. "Mining Pareto-optimal modules for delayed product differentiation," European Journal of Operational Research, Elsevier, vol. 201(1), pages 123-128, February.
    5. Seona Lee & Sang-Ho Lee & HyungJune Lee, 2020. "Timely directional data delivery to multiple destinations through relay population control in vehicular ad hoc network," International Journal of Distributed Sensor Networks, , vol. 16(5), pages 15501477209, May.
    6. Zhuang, Yanling & Zhou, Yun & Yuan, Yufei & Hu, Xiangpei & Hassini, Elkafi, 2022. "Order picking optimization with rack-moving mobile robots and multiple workstations," European Journal of Operational Research, Elsevier, vol. 300(2), pages 527-544.
    7. Menghong Li & Yingli Ran & Zhao Zhang, 2022. "A primal-dual algorithm for the minimum power partial cover problem," Journal of Combinatorial Optimization, Springer, vol. 44(3), pages 1913-1923, October.
    8. Wang, Yiyuan & Pan, Shiwei & Al-Shihabi, Sameh & Zhou, Junping & Yang, Nan & Yin, Minghao, 2021. "An improved configuration checking-based algorithm for the unicost set covering problem," European Journal of Operational Research, Elsevier, vol. 294(2), pages 476-491.
    9. C Guéret & N Jussien & O Lhomme & C Pavageau & C Prins, 2003. "Loading aircraft for military operations," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(5), pages 458-465, May.
    10. Keisuke Murakami, 2018. "Iterative Column Generation Algorithm for Generalized Multi-Vehicle Covering Tour Problem," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(04), pages 1-22, August.
    11. R. L. Francis & T. J. Lowe & Arie Tamir, 2000. "Aggregation Error Bounds for a Class of Location Models," Operations Research, INFORMS, vol. 48(2), pages 294-307, April.
    12. Dongyue Liang & Zhao Zhang & Xianliang Liu & Wei Wang & Yaolin Jiang, 2016. "Approximation algorithms for minimum weight partial connected set cover problem," Journal of Combinatorial Optimization, Springer, vol. 31(2), pages 696-712, February.
    13. Abdullah Alshehri & Mahmoud Owais & Jayadev Gyani & Mishal H. Aljarbou & Saleh Alsulamy, 2023. "Residual Neural Networks for Origin–Destination Trip Matrix Estimation from Traffic Sensor Information," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    14. June Sung Park & Jinyoung Jang & Eunjung Lee, 0. "Theoretical and empirical studies on essence-based adaptive software engineering," Information Technology and Management, Springer, vol. 0, pages 1-13.
    15. Wedelin, Dag, 1995. "The design of a 0-1 integer optimizer and its application in the Carmen system," European Journal of Operational Research, Elsevier, vol. 87(3), pages 722-730, December.
    16. Sun, Yi-Fan & Sun, Zheng-Yang, 2019. "Target observation of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 233-245.
    17. Victor Reyes & Ignacio Araya, 2021. "A GRASP-based scheme for the set covering problem," Operational Research, Springer, vol. 21(4), pages 2391-2408, December.
    18. Taoqing Zhou & Zhipeng Lü & Yang Wang & Junwen Ding & Bo Peng, 2016. "Multi-start iterated tabu search for the minimum weight vertex cover problem," Journal of Combinatorial Optimization, Springer, vol. 32(2), pages 368-384, August.
    19. Giovanni Felici & Sokol Ndreca & Aldo Procacci & Benedetto Scoppola, 2016. "A-priori upper bounds for the set covering problem," Annals of Operations Research, Springer, vol. 238(1), pages 229-241, March.
    20. Owais, Mahmoud & Moussa, Ghada S. & Hussain, Khaled F., 2019. "Sensor location model for O/D estimation: Multi-criteria meta-heuristics approach," Operations Research Perspectives, Elsevier, vol. 6(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:16:y:2008:i:4:p:407-414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.