IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v16y2008i2p205-213.html
   My bibliography  Save this article

Uniform LP duality for semidefinite and semi-infinite programming

Author

Listed:
  • Qinghong Zhang

Abstract

Recently, a semidefinite and semi-infinite linear programming problem (SDSIP), its dual (DSDSIP), and uniform LP duality between (SDSIP) and (DSDSIP) were proposed and studied by Li et al. (Optimization 52:507–528, 2003). In this paper, we show that (SDSIP) is an ordinary linear semi-infinite program and, therefore, all the existing results regarding duality and uniform LP duality for linear semi-infinite programs can be applied to (SDSIP). By this approach, the main results of Li et al. (Optimization 52:507–528, 2003) can be obtained easily. Copyright Springer-Verlag 2008

Suggested Citation

  • Qinghong Zhang, 2008. "Uniform LP duality for semidefinite and semi-infinite programming," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 16(2), pages 205-213, June.
  • Handle: RePEc:spr:cejnor:v:16:y:2008:i:2:p:205-213
    DOI: 10.1007/s10100-007-0048-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10100-007-0048-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10100-007-0048-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Charnes & W. W. Cooper & K. Kortanek, 1965. "On Representations of Semi-Infinite Programs which Have No Duality Gaps," Management Science, INFORMS, vol. 12(1), pages 113-121, September.
    2. R. J. Duffin & L. A. Karlovitz, 1965. "An Infinite Linear Program with a Duality Gap," Management Science, INFORMS, vol. 12(1), pages 122-134, September.
    3. A. Charnes & W. W. Cooper & K. Kortanek, 1963. "Duality in Semi-Infinite Programs and Some Works of Haar and Carathéodory," Management Science, INFORMS, vol. 9(2), pages 209-228, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Gavalec & Karel Zimmermann, 2012. "Duality for max-separable problems," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(3), pages 409-419, September.
    2. O. I. Kostyukova & T. V. Tchemisova & O. S. Dudina, 2024. "On the Uniform Duality in Copositive Optimization," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1940-1966, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. A. Goberna & M. A. López, 2017. "Recent contributions to linear semi-infinite optimization," 4OR, Springer, vol. 15(3), pages 221-264, September.
    2. M. A. Goberna & M. A. López, 2018. "Recent contributions to linear semi-infinite optimization: an update," Annals of Operations Research, Springer, vol. 271(1), pages 237-278, December.
    3. Qinghong Zhang, 2017. "Strong Duality and Dual Pricing Properties in Semi-Infinite Linear Programming: A non-Fourier–Motzkin Elimination Approach," Journal of Optimization Theory and Applications, Springer, vol. 175(3), pages 702-717, December.
    4. Glover, Fred & Sueyoshi, Toshiyuki, 2009. "Contributions of Professor William W. Cooper in Operations Research and Management Science," European Journal of Operational Research, Elsevier, vol. 197(1), pages 1-16, August.
    5. Jerez, Belen, 2003. "A dual characterization of incentive efficiency," Journal of Economic Theory, Elsevier, vol. 112(1), pages 1-34, September.
    6. Amitabh Basu & Kipp Martin & Christopher Thomas Ryan, 2015. "Projection: A Unified Approach to Semi-Infinite Linear Programs and Duality in Convex Programming," Mathematics of Operations Research, INFORMS, vol. 40(1), pages 146-170, February.
    7. M. A. Goberna & V. Jornet & R. Puente & M. I. Todorov, 1999. "Analytical Linear Inequality Systems and Optimization," Journal of Optimization Theory and Applications, Springer, vol. 103(1), pages 95-119, October.
    8. Chuong, T.D. & Jeyakumar, V., 2017. "Convergent hierarchy of SDP relaxations for a class of semi-infinite convex polynomial programs and applications," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 381-399.
    9. M. Goberna & M. Todorov & V. Vera de Serio, 2012. "On stable uniqueness in linear semi-infinite optimization," Journal of Global Optimization, Springer, vol. 53(2), pages 347-361, June.
    10. H. Edwin Romeijn & Robert L. Smith, 1998. "Shadow Prices in Infinite-Dimensional Linear Programming," Mathematics of Operations Research, INFORMS, vol. 23(1), pages 239-256, February.
    11. András Prékopa & Anh Ninh & Gabriela Alexe, 2016. "On the relationship between the discrete and continuous bounding moment problems and their numerical solutions," Annals of Operations Research, Springer, vol. 238(1), pages 521-575, March.
    12. Wang, Tingsong & Meng, Qiang & Tian, Xuecheng, 2024. "Dynamic container slot allocation for a liner shipping service," Transportation Research Part B: Methodological, Elsevier, vol. 179(C).
    13. Cooper, W. W. & Hemphill, H. & Huang, Z. & Li, S. & Lelas, V. & Sullivan, D. W., 1997. "Survey of mathematical programming models in air pollution management," European Journal of Operational Research, Elsevier, vol. 96(1), pages 1-35, January.
    14. Ulaş Özen & Marco Slikker & Greys Sošić, 2022. "On the core of m$m$‐attribute games," Production and Operations Management, Production and Operations Management Society, vol. 31(4), pages 1770-1787, April.
    15. Bel? Jerez, 2000. "General Equilibrium with Asymmetric Information: a Dual Approach," UFAE and IAE Working Papers 510.02, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    16. Xiao-Bing Li & Suliman Al-Homidan & Qamrul Hasan Ansari & Jen-Chih Yao, 2020. "Robust Farkas-Minkowski Constraint Qualification for Convex Inequality System Under Data Uncertainty," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 785-802, June.
    17. Lopez, Marco & Still, Georg, 2007. "Semi-infinite programming," European Journal of Operational Research, Elsevier, vol. 180(2), pages 491-518, July.
    18. W. W. Cooper, 2002. "Abraham Charnes and W. W. Cooper (et al.): A Brief History of a Long Collaboration in Developing Industrial Uses of Linear Programming," Operations Research, INFORMS, vol. 50(1), pages 35-41, February.
    19. Feng Guo & Liguo Jiao, 2021. "On solving a class of fractional semi-infinite polynomial programming problems," Computational Optimization and Applications, Springer, vol. 80(2), pages 439-481, November.
    20. Goberna, M. A. & Lopez, M. A., 2002. "Linear semi-infinite programming theory: An updated survey," European Journal of Operational Research, Elsevier, vol. 143(2), pages 390-405, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:16:y:2008:i:2:p:205-213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.