IDEAS home Printed from https://ideas.repec.org/a/spr/bioerq/v2y2017i4d10.1007_s41247-017-0031-2.html
   My bibliography  Save this article

In Support of a Physics-Based Energy Transition Planning: Sowing Our Future Energy Needs

Author

Listed:
  • Ugo Bardi

    (Università di Firenze, Polo Scientifico di Sesto Fiorentino)

  • Sgouris Sgouridis

    (Khalifa University)

Abstract

Attaining the objectives set by the COP21 Paris agreement on climate involves not only phasing out fossil fuels from the world’s energy mix but also replacing the energy services they provide with renewable energy and better efficiency, approximately by the mid-twenty-first century. A recent controversy on the viability of 100% renewable energy systems (Jacobson et al. in Proc Natl Acad Sci 112:15060–15065; Clack et al. in PNAS 114:6722–6727) brought forward the question of whether we can actually rely on renewable energy to replace conventional fossil resources. Focusing on the physical factors involved may offer us a currently underutilized method to reduce controversy showing that, in practical terms, the two parties are closer than immediately apparent. A physical perspective suggests that accelerated deployment of renewable energy sources makes attaining the Paris objectives feasible, although not without a major effort. A policy directed to increase capital investments in an early and fast expansion of the renewable energy and storage infrastructure is a crucial requirement for this purpose.

Suggested Citation

  • Ugo Bardi & Sgouris Sgouridis, 2017. "In Support of a Physics-Based Energy Transition Planning: Sowing Our Future Energy Needs," Biophysical Economics and Resource Quality, Springer, vol. 2(4), pages 1-5, December.
  • Handle: RePEc:spr:bioerq:v:2:y:2017:i:4:d:10.1007_s41247-017-0031-2
    DOI: 10.1007/s41247-017-0031-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s41247-017-0031-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s41247-017-0031-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abdulla Kaya & Denes Csala & Sgouris Sgouridis, 2017. "Constant elasticity of substitution functions for energy modeling in general equilibrium integrated assessment models: a critical review and recommendations," Climatic Change, Springer, vol. 145(1), pages 27-40, November.
    2. Jacobson, Mark Z. & Delucchi, Mark A., 2011. "Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials," Energy Policy, Elsevier, vol. 39(3), pages 1154-1169, March.
    3. Trutnevyte, Evelina, 2016. "Does cost optimization approximate the real-world energy transition?," Energy, Elsevier, vol. 106(C), pages 182-193.
    4. Ueckerdt, Falko & Pietzcker, Robert & Scholz, Yvonne & Stetter, Daniel & Giannousakis, Anastasis & Luderer, Gunnar, 2017. "Decarbonizing global power supply under region-specific consideration of challenges and options of integrating variable renewables in the REMIND model," Energy Economics, Elsevier, vol. 64(C), pages 665-684.
    5. Martin L. Weitzman, 2009. "On Modeling and Interpreting the Economics of Catastrophic Climate Change," The Review of Economics and Statistics, MIT Press, vol. 91(1), pages 1-19, February.
    6. Björn Nykvist & Måns Nilsson, 2015. "Rapidly falling costs of battery packs for electric vehicles," Nature Climate Change, Nature, vol. 5(4), pages 329-332, April.
    7. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    8. Elliston, Ben & MacGill, Iain & Diesendorf, Mark, 2014. "Comparing least cost scenarios for 100% renewable electricity with low emission fossil fuel scenarios in the Australian National Electricity Market," Renewable Energy, Elsevier, vol. 66(C), pages 196-204.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timmons, David & Konstantinidis, Charalampos & Shapiro, Andrew M. & Wilson, Alex, 2016. "Decarbonizing residential building energy: A cost-effective approach," Energy Policy, Elsevier, vol. 92(C), pages 382-392.
    2. Svartzman, Romain & Dron, Dominique & Espagne, Etienne, 2019. "From ecological macroeconomics to a theory of endogenous money for a finite planet," Ecological Economics, Elsevier, vol. 162(C), pages 108-120.
    3. Hann, Veryan, 2020. "Transition to decentralised electricity storage: The complexities of consumer decision-making and cost-benefit analyses," Energy Policy, Elsevier, vol. 147(C).
    4. van den Bergh, J.C.J.M. & Botzen, W.J.W., 2015. "Monetary valuation of the social cost of CO2 emissions: A critical survey," Ecological Economics, Elsevier, vol. 114(C), pages 33-46.
    5. Richard S. J. Tol & In Chang Hwang & Frédéric Reynès, 2012. "The Effect of Learning on Climate Policy under Fat-tailed Uncertainty," Working Paper Series 5312, Department of Economics, University of Sussex Business School.
    6. Simon Levin & Anastasios Xepapadeas, 2021. "On the Coevolution of Economic and Ecological Systems," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 355-377, October.
    7. Hahn Robert, 2010. "Designing Smarter Regulation with Improved Benefit-Cost Analysis," Journal of Benefit-Cost Analysis, De Gruyter, vol. 1(1), pages 1-19, July.
    8. Bommier, Antoine & Lanz, Bruno & Zuber, Stéphane, 2015. "Models-as-usual for unusual risks? On the value of catastrophic climate change," Journal of Environmental Economics and Management, Elsevier, vol. 74(C), pages 1-22.
    9. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    10. Matthew J. Holian & Matthew E. Kahn, 2014. "Household Demand for Low Carbon Public Policies: Evidence from California," NBER Working Papers 19965, National Bureau of Economic Research, Inc.
    11. Steve Newbold & Charles Griffiths & Christopher C. Moore & Ann Wolverton & Elizabeth Kopits, 2010. "The "Social Cost of Carbon" Made Simple," NCEE Working Paper Series 201007, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Aug 2010.
    12. Kenneth Gillingham & William D. Nordhaus & David Anthoff & Geoffrey Blanford & Valentina Bosetti & Peter Christensen & Haewon McJeon & John Reilly & Paul Sztorc, 2015. "Modeling Uncertainty in Climate Change: A Multi-Model Comparison," NBER Working Papers 21637, National Bureau of Economic Research, Inc.
    13. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    14. Matthias Schmidt & Hermann Held & Elmar Kriegler & Alexander Lorenz, 2013. "Climate Policy Under Uncertain and Heterogeneous Climate Damages," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(1), pages 79-99, January.
    15. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    16. Seth D. Baum & Timothy M. Maher & Jacob Haqq-Misra, 2013. "Double catastrophe: intermittent stratospheric geoengineering induced by societal collapse," Environment Systems and Decisions, Springer, vol. 33(1), pages 168-180, March.
    17. Robert J. R. Elliott & Ingmar Schumacher & Cees Withagen, 2020. "Suggestions for a Covid-19 Post-Pandemic Research Agenda in Environmental Economics," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 1187-1213, August.
    18. Pindyck, Robert S., 2019. "The social cost of carbon revisited," Journal of Environmental Economics and Management, Elsevier, vol. 94(C), pages 140-160.
    19. Duersch, Peter & Römer, Daniel & Roth, Benjamin, 2013. "Intertemporal stability of ambiguity preferences," Working Papers 0548, University of Heidelberg, Department of Economics.
    20. Luca Gerotto & Paolo Pellizzari, 2021. "A replication of Pindyck’s willingness to pay: on the efforts required to obtain results," SN Business & Economics, Springer, vol. 1(5), pages 1-25, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:bioerq:v:2:y:2017:i:4:d:10.1007_s41247-017-0031-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.