IDEAS home Printed from https://ideas.repec.org/a/spr/astaws/v14y2020i2d10.1007_s11943-020-00272-x.html
   My bibliography  Save this article

Datenerhebung bei Mietspiegeln: Überblick und Einordnung aus Sicht der Statistik
[Collection of data for rent indexes: Overview and discussion from a statistical perspective]

Author

Listed:
  • Göran Kauermann
  • Michael Windmann

    (Ludwig-Maximilians-Universität München)

  • Ralf Münnich

Abstract

Zusammenfassung Der Artikel diskutiert die verschiedenen Methoden bei der Datenerhebung von Mietspiegeln. Es werden Vor- und Nachteile der in der Praxis zu findenden Methoden diskutiert und aus dem statistischen Blickwinkel beleuchtet. Dabei gehen wir den drei Fragen nach: Wer wird befragt? Wie wird befragt? Wie erfolgt die Stichprobenziehung? Neben statistischen Aspekten werden die Mietspiegel der 30 größten Städte als Beispiel herangezogen, um aufzuzeigen, dass die angewandte Methodik in der Praxis sehr heterogen ist.

Suggested Citation

  • Göran Kauermann & Michael Windmann & Ralf Münnich, 2020. "Datenerhebung bei Mietspiegeln: Überblick und Einordnung aus Sicht der Statistik [Collection of data for rent indexes: Overview and discussion from a statistical perspective]," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 14(2), pages 145-162, July.
  • Handle: RePEc:spr:astaws:v:14:y:2020:i:2:d:10.1007_s11943-020-00272-x
    DOI: 10.1007/s11943-020-00272-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11943-020-00272-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11943-020-00272-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mary E. Thompson, 2019. "Combining Data from New and Traditional Sources in Population Surveys," International Statistical Review, International Statistical Institute, vol. 87(S1), pages 79-89, May.
    2. Rao, J. N. K. & Wu, Changbao, 2010. "Pseudo–Empirical Likelihood Inference for Multiple Frame Surveys," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1494-1503.
    3. Florian Meinfelder, 2014. "Multiple Imputation: an attempt to retell the evolutionary process," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 8(4), pages 249-267, November.
    4. Jean-Claude Deville & Yves Tille, 2004. "Efficient balanced sampling: The cube method," Biometrika, Biometrika Trust, vol. 91(4), pages 893-912, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Timo Schmid & Markus Zwick, 2020. "Vorwort der Herausgeber," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 14(2), pages 117-120, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Louis Geiler & Séverine Affeldt & Mohamed Nadif, 2022. "A survey on machine learning methods for churn prediction," Post-Print hal-03824873, HAL.
    2. Lennart Bondesson, 2010. "Conditional and Restricted Pareto Sampling: Two New Methods for Unequal Probability Sampling," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(3), pages 514-530, September.
    3. Tillé, Yves & Favre, Anne-Catherine, 2005. "Optimal allocation in balanced sampling," Statistics & Probability Letters, Elsevier, vol. 74(1), pages 31-37, August.
    4. Yves Tillé, 2016. "The legacy of Corrado Gini in survey sampling and inequality theory," METRON, Springer;Sapienza Università di Roma, vol. 74(2), pages 167-176, August.
    5. Tobias Schoch & André Müller, 2020. "Treatment of sample under-representation and skewed heavy-tailed distributions in survey-based microsimulation: An analysis of redistribution effects in compulsory health care insurance in Switzerland," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 14(3), pages 267-304, December.
    6. Antonio Arcos & María del Mar Rueda & Manuel Trujillo & David Molina, 2015. "Review of Estimation Methods for Landline and Cell Phone Surveys," Sociological Methods & Research, , vol. 44(3), pages 458-485, August.
    7. Jelke Wibbeke & Payam Teimourzadeh Baboli & Sebastian Rohjans, 2022. "Optimal Data Reduction of Training Data in Machine Learning-Based Modelling: A Multidimensional Bin Packing Approach," Energies, MDPI, vol. 15(9), pages 1-13, April.
    8. J. N. K. Rao, 2021. "On Making Valid Inferences by Integrating Data from Surveys and Other Sources," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 242-272, May.
    9. Ralf Thomas Münnich, 2016. "Vorwort des Herausgebers," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 10(4), pages 197-203, December.
    10. Lin, X. Sheldon & Yang, Shuai, 2020. "Fast and efficient nested simulation for large variable annuity portfolios: A surrogate modeling approach," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 85-103.
    11. I. Sánchez-Borrego & A. Arcos & M. Rueda, 2019. "Kernel-based methods for combining information of several frame surveys," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(1), pages 71-86, January.
    12. R. Benedetti & M. S. Andreano & F. Piersimoni, 2019. "Sample selection when a multivariate set of size measures is available," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(1), pages 1-25, March.
    13. Maria Michela Dickson & Yves Tillé, 2016. "Ordered spatial sampling by means of the traveling salesman problem," Computational Statistics, Springer, vol. 31(4), pages 1359-1372, December.
    14. David HAZIZA & Guillaume CHAUVET & Jean-Claude DEVILLE, 2008. "A Note on Sampling and Estimation in the Presence of Cut-Off Sampling," Working Papers 2008-30, Center for Research in Economics and Statistics.
    15. Guillaume Chauvet & Ronan Le Gleut, 2021. "Inference under pivotal sampling: Properties, variance estimation, and application to tesselation for spatial sampling," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 108-131, March.
    16. Hervé Cardot & Camelia Goga & Pauline Lardin, 2014. "Variance Estimation and Asymptotic Confidence Bands for the Mean Estimator of Sampled Functional Data with High Entropy Unequal Probability Sampling Designs," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 516-534, June.
    17. Maria Michela Dickson & Giuseppe Espa & Diego Giuliani, 2016. "Incomplete geocoding and spatial sampling: the effects of locational errors on population total estimation," DEM Working Papers 2016/04, Department of Economics and Management.
    18. Yves Tillé, 2022. "Some Solutions Inspired by Survey Sampling Theory to Build Effective Clinical Trials," International Statistical Review, International Statistical Institute, vol. 90(3), pages 481-498, December.
    19. Desislava Nedyalkova & Lionel Qualité & Yves Tillé, 2009. "General framework for the rotation of units in repeated survey sampling," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(3), pages 269-293, August.
    20. Kaeding, Matthias, 2016. "Fast, approximate MCMC for Bayesian analysis of large data sets: A design based approach," Ruhr Economic Papers 660, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:astaws:v:14:y:2020:i:2:d:10.1007_s11943-020-00272-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.