IDEAS home Printed from https://ideas.repec.org/a/spr/aqjoor/v15y2017i3d10.1007_s10288-016-0337-8.html
   My bibliography  Save this article

Partially observed optimal stopping problem for discrete-time Markov processes

Author

Listed:
  • Benoîte Saporta

    (IMAG)

  • François Dufour

    (INRIA)

  • Christophe Nivot

    (INRIA)

Abstract

This paper is dedicated to the investigation of a new numerical method to approximate the optimal stopping problem for a discrete-time continuous state space Markov chain under partial observations. It is based on a two-step discretization procedure based on optimal quantization. First, we discretize the state space of the unobserved variable by quantizing an underlying reference measure. Then we jointly discretize the resulting approximate filter and the observation process. We obtain a fully computable approximation of the value function with explicit error bounds for its convergence towards the true value function.

Suggested Citation

  • Benoîte Saporta & François Dufour & Christophe Nivot, 2017. "Partially observed optimal stopping problem for discrete-time Markov processes," 4OR, Springer, vol. 15(3), pages 277-302, September.
  • Handle: RePEc:spr:aqjoor:v:15:y:2017:i:3:d:10.1007_s10288-016-0337-8
    DOI: 10.1007/s10288-016-0337-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10288-016-0337-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10288-016-0337-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vlad Bally & Gilles Pagès & Jacques Printems, 2005. "A Quantization Tree Method For Pricing And Hedging Multidimensional American Options," Mathematical Finance, Wiley Blackwell, vol. 15(1), pages 119-168, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang Chen & Xianping Guo & Zhong-Wei Liao, 2022. "Optimal Stopping Time on Semi-Markov Processes with Finite Horizon," Journal of Optimization Theory and Applications, Springer, vol. 194(2), pages 408-439, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rutger-Jan Lange & Coen N. Teulings, 2021. "The option value of vacant land: Don't build when demand for housing is booming," Tinbergen Institute Discussion Papers 21-022/IV, Tinbergen Institute.
    2. Giorgia Callegaro & Alessandro Gnoatto & Martino Grasselli, 2021. "A Fully Quantization-based Scheme for FBSDEs," Working Papers 07/2021, University of Verona, Department of Economics.
    3. Zineb El Filali Ech-Chafiq & Pierre Henry-Labordere & Jérôme Lelong, 2021. "Pricing Bermudan options using regression trees/random forests," Working Papers hal-03436046, HAL.
    4. repec:hum:wpaper:sfb649dp2006-051 is not listed on IDEAS
    5. Calypso Herrera & Florian Krach & Pierre Ruyssen & Josef Teichmann, 2021. "Optimal Stopping via Randomized Neural Networks," Papers 2104.13669, arXiv.org, revised Dec 2023.
    6. Anne Laure Bronstein & Gilles Pagès & Jacques Portès, 2013. "Multi-asset American Options and Parallel Quantization," Methodology and Computing in Applied Probability, Springer, vol. 15(3), pages 547-561, September.
    7. Rutger-Jan Lange & Coen Teulings, 2018. "The option value of vacant land and the optimal timing of city extensions," Tinbergen Institute Discussion Papers 18-033/III, Tinbergen Institute.
    8. Denis Belomestny & Grigori Milstein & Vladimir Spokoiny, 2009. "Regression methods in pricing American and Bermudan options using consumption processes," Quantitative Finance, Taylor & Francis Journals, vol. 9(3), pages 315-327.
    9. Gilles Pag`es & Benedikt Wilbertz, 2011. "GPGPUs in computational finance: Massive parallel computing for American style options," Papers 1101.3228, arXiv.org.
    10. Vincent Lemaire & Thibaut Montes & Gilles Pagès, 2020. "New Weak Error bounds and expansions for Optimal Quantization," Post-Print hal-02361644, HAL.
    11. Tao Chen & Mike Ludkovski & Moritz Vo{ss}, 2022. "On Parametric Optimal Execution and Machine Learning Surrogates," Papers 2204.08581, arXiv.org, revised Oct 2023.
    12. Long-Hao Xu & Kai-Tai Fang & Ping He, 2022. "Properties and generation of representative points of the exponential distribution," Statistical Papers, Springer, vol. 63(1), pages 197-223, February.
    13. Sebastian Becker & Patrick Cheridito & Arnulf Jentzen, 2020. "Pricing and Hedging American-Style Options with Deep Learning," JRFM, MDPI, vol. 13(7), pages 1-12, July.
    14. Belomestny, Denis & Milstein, Grigori N., 2006. "Adaptive simulation algorithms for pricing American and Bermudan options by local analysis of financial market," SFB 649 Discussion Papers 2006-038, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    15. Vincent Lemaire & Thibaut Montes & Gilles Pagès, 2019. "New Weak Error bounds and expansions for Optimal Quantization," Working Papers hal-02361644, HAL.
    16. Georg Pflug & Alois Pichler, 2015. "Dynamic generation of scenario trees," Computational Optimization and Applications, Springer, vol. 62(3), pages 641-668, December.
    17. Polynice Oyono Ngou & Cody Hyndman, 2014. "A Fourier interpolation method for numerical solution of FBSDEs: Global convergence, stability, and higher order discretizations," Papers 1410.8595, arXiv.org, revised May 2022.
    18. Ivan Guo & Nicolas Langren'e & Jiahao Wu, 2023. "Simultaneous upper and lower bounds of American-style option prices with hedging via neural networks," Papers 2302.12439, arXiv.org, revised Nov 2024.
    19. Anna Battauz & Francesco Rotondi, 2022. "American options and stochastic interest rates," Computational Management Science, Springer, vol. 19(4), pages 567-604, October.
    20. Qiang Han & Shaolin Ji, 2022. "A Multi-Step Algorithm for BSDEs Based On a Predictor-Corrector Scheme and Least-Squares Monte Carlo," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2403-2426, December.
    21. Jin, Xing & Li, Xun & Tan, Hwee Huat & Wu, Zhenyu, 2013. "A computationally efficient state-space partitioning approach to pricing high-dimensional American options via dimension reduction," European Journal of Operational Research, Elsevier, vol. 231(2), pages 362-370.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aqjoor:v:15:y:2017:i:3:d:10.1007_s10288-016-0337-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.