IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1906.09431.html
   My bibliography  Save this paper

Semi-tractability of optimal stopping problems via a weighted stochastic mesh algorithm

Author

Listed:
  • D. Belomestny
  • M. Kaledin
  • J. Schoenmakers

Abstract

In this article we propose a Weighted Stochastic Mesh (WSM) Algorithm for approximating the value of a discrete and continuous time optimal stopping problem. We prove that in the discrete case the WSM algorithm leads to semi-tractability of the corresponding optimal problems in the sense that its complexity is bounded in order by $\varepsilon^{-4}\log^{d+2}(1/\varepsilon)$ with $d$ being the dimension of the underlying Markov chain. Furthermore we study the WSM approach in the context of continuous time optimal stopping problems and derive the corresponding complexity bounds. Although we can not prove semi-tractability in this case, our bounds turn out to be the tightest ones among the bounds known for the existing algorithms in the literature. We illustrate our theoretical findings by a numerical example.

Suggested Citation

  • D. Belomestny & M. Kaledin & J. Schoenmakers, 2019. "Semi-tractability of optimal stopping problems via a weighted stochastic mesh algorithm," Papers 1906.09431, arXiv.org.
  • Handle: RePEc:arx:papers:1906.09431
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1906.09431
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. David A. Goldberg & Yilun Chen, 2018. "Polynomial time algorithm for optimal stopping with fixed accuracy," Papers 1807.02227, arXiv.org, revised May 2024.
    3. Patrick Jaillet & Damien Lamberton & Bernard Lapeyre, 1990. "Variational inequalities and the pricing of American options," Post-Print hal-01667008, HAL.
    4. John Rust, 1997. "Using Randomization to Break the Curse of Dimensionality," Econometrica, Econometric Society, vol. 65(3), pages 487-516, May.
    5. Beom Jin Kim & Yong-Ki Ma & Hi Jun Choe, 2013. "A Simple Numerical Method for Pricing an American Put Option," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-7, February.
    6. Denis Belomestny & John Schoenmakers, 2018. "Advanced Simulation-Based Methods for Optimal Stopping and Control," Palgrave Macmillan Books, Palgrave Macmillan, number 978-1-137-03351-2.
    7. Philip Protter & Emmanuelle Clément & Damien Lamberton, 2002. "An analysis of a least squares regression method for American option pricing," Finance and Stochastics, Springer, vol. 6(4), pages 449-471.
    8. Daniel Zanger, 2013. "Quantitative error estimates for a least-squares Monte Carlo algorithm for American option pricing," Finance and Stochastics, Springer, vol. 17(3), pages 503-534, July.
    9. Vlad Bally & Gilles Pagès & Jacques Printems, 2005. "A Quantization Tree Method For Pricing And Hedging Multidimensional American Options," Mathematical Finance, Wiley Blackwell, vol. 15(1), pages 119-168, January.
    10. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Denis Belomestny & Maxim Kaledin & John Schoenmakers, 2020. "Semitractability of optimal stopping problems via a weighted stochastic mesh algorithm," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1591-1616, October.
    2. Zineb El Filali Ech-Chafiq & Pierre Henry-Labordere & Jérôme Lelong, 2021. "Pricing Bermudan options using regression trees/random forests," Working Papers hal-03436046, HAL.
    3. Denis Belomestny & Grigori Milstein & Vladimir Spokoiny, 2009. "Regression methods in pricing American and Bermudan options using consumption processes," Quantitative Finance, Taylor & Francis Journals, vol. 9(3), pages 315-327.
    4. S'ergio C. Bezerra & Alberto Ohashi & Francesco Russo & Francys de Souza, 2017. "Discrete-type approximations for non-Markovian optimal stopping problems: Part II," Papers 1707.05250, arXiv.org, revised Dec 2019.
    5. Ivan Guo & Nicolas Langren'e & Jiahao Wu, 2023. "Simultaneous upper and lower bounds of American-style option prices with hedging via neural networks," Papers 2302.12439, arXiv.org, revised Nov 2024.
    6. Anna Battauz & Francesco Rotondi, 2022. "American options and stochastic interest rates," Computational Management Science, Springer, vol. 19(4), pages 567-604, October.
    7. Berridge, S.J. & Schumacher, J.M., 2002. "An Irregular Grid Approach for Pricing High Dimensional American Options," Discussion Paper 2002-99, Tilburg University, Center for Economic Research.
    8. Bradley Sturt, 2021. "A nonparametric algorithm for optimal stopping based on robust optimization," Papers 2103.03300, arXiv.org, revised Mar 2023.
    9. Fabozzi, Frank J. & Paletta, Tommaso & Tunaru, Radu, 2017. "An improved least squares Monte Carlo valuation method based on heteroscedasticity," European Journal of Operational Research, Elsevier, vol. 263(2), pages 698-706.
    10. Zhiyi Shen & Chengguo Weng, 2019. "A Backward Simulation Method for Stochastic Optimal Control Problems," Papers 1901.06715, arXiv.org.
    11. Christian Bayer & Martin Redmann & John Schoenmakers, 2018. "Dynamic programming for optimal stopping via pseudo-regression," Papers 1808.04725, arXiv.org, revised Apr 2019.
    12. Chen Liu & Henry Schellhorn & Qidi Peng, 2019. "American Option Pricing With Regression: Convergence Analysis," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(08), pages 1-31, December.
    13. Zineb El Filali Ech-Chafiq & Pierre Henry Labordère & Jérôme Lelong, 2023. "Pricing Bermudan options using regression trees/random forests," Post-Print hal-03436046, HAL.
    14. Maciej Klimek & Marcin Pitera, 2014. "The least squares method for option pricing revisited," Papers 1404.7438, arXiv.org, revised Nov 2015.
    15. Daniel Z. Zanger, 2020. "General Error Estimates for the Longstaff–Schwartz Least-Squares Monte Carlo Algorithm," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 923-946, August.
    16. Sérgio C. Bezerra & Alberto Ohashi & Francesco Russo & Francys Souza, 2020. "Discrete-type Approximations for Non-Markovian Optimal Stopping Problems: Part II," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 1221-1255, September.
    17. Tomonori Nakatsu, 2017. "An Integration by Parts Type Formula for Stopping Times and its Application," Methodology and Computing in Applied Probability, Springer, vol. 19(3), pages 751-773, September.
    18. Christian Bayer & Denis Belomestny & Paul Hager & Paolo Pigato & John Schoenmakers, 2020. "Randomized optimal stopping algorithms and their convergence analysis," Papers 2002.00816, arXiv.org.
    19. Christian Bayer & Juho Happola & Ra'ul Tempone, 2017. "Implied Stopping Rules for American Basket Options from Markovian Projection," Papers 1705.00558, arXiv.org, revised Jun 2017.
    20. Marta Biancardi & Giovanni Villani, 2017. "Robust Monte Carlo Method for R&D Real Options Valuation," Computational Economics, Springer;Society for Computational Economics, vol. 49(3), pages 481-498, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1906.09431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.