IDEAS home Printed from https://ideas.repec.org/a/spr/aphecp/v17y2019i6d10.1007_s40258-019-00513-3.html
   My bibliography  Save this article

A Review of Recent Decision-Analytic Models Used to Evaluate the Economic Value of Cancer Treatments

Author

Listed:
  • Ash Bullement

    (Delta Hat Limited)

  • Holly L. Cranmer

    (Takeda UK Limited)

  • Gemma E. Shields

    (University of Manchester)

Abstract

Cost-effectiveness analysis provides information on the potential value of new cancer treatments, which is particularly pertinent for decision makers as demand for treatment grows while healthcare budgets remain fixed. A range of decision-analytic modelling approaches can be used to estimate cost effectiveness. This study summarises the key modelling approaches considered in oncology, alongside their advantages and limitations. A review was conducted to identify single technology appraisals (STAs) submitted to the National Institute for Health and Care Excellence (NICE) and published papers reporting full economic evaluations of cancer treatments published within the last 5 years. The review was supplemented with the existing methods literature discussing cancer modelling. In total, 100 NICE STAs and 124 published studies were included. Partitioned-survival analysis (n = 54) and discrete-time state transition structures (n = 41) were the main structures submitted to NICE. Conversely, the published studies reported greater use of discrete-time state transition models (n = 102). Limited justification of model structure was provided by authors, despite an awareness in the existing literature that the model structure should be considered thoroughly and can greatly influence cost-effectiveness results. Justification for the choice of model structure was limited and studies would be improved with a thorough rationale for this choice. The strengths and weaknesses of each approach should be considered by future researchers. Alternative methods (such as multi-state modelling) are likely to be utilised more frequently in the future, and so justification of these more advanced methods is paramount to their acceptability to inform healthcare decision making.

Suggested Citation

  • Ash Bullement & Holly L. Cranmer & Gemma E. Shields, 2019. "A Review of Recent Decision-Analytic Models Used to Evaluate the Economic Value of Cancer Treatments," Applied Health Economics and Health Policy, Springer, vol. 17(6), pages 771-780, December.
  • Handle: RePEc:spr:aphecp:v:17:y:2019:i:6:d:10.1007_s40258-019-00513-3
    DOI: 10.1007/s40258-019-00513-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40258-019-00513-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40258-019-00513-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alan Brennan & Stephen E. Chick & Ruth Davies, 2006. "A taxonomy of model structures for economic evaluation of health technologies," Health Economics, John Wiley & Sons, Ltd., vol. 15(12), pages 1295-1310, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koen Degeling & Martin Vu & Hendrik Koffijberg & Hui-Li Wong & Miriam Koopman & Peter Gibbs & Maarten IJzerman, 2020. "Health Economic Models for Metastatic Colorectal Cancer: A Methodological Review," PharmacoEconomics, Springer, vol. 38(7), pages 683-713, July.
    2. Huajie Jin & Stewart Robinson & Wenru Shang & Evanthia Achilla & David Aceituno & Sarah Byford, 2021. "Overview and Use of Tools for Selecting Modelling Techniques in Health Economic Studies," PharmacoEconomics, Springer, vol. 39(7), pages 757-770, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heß, Michael (Ed.) & Schlieter, Hannes (Ed.), 2014. "Modellierung im Gesundheitswesen: Tagungsband des Workshops im Rahmen der Modellierung 2014," ICB Research Reports 57, University Duisburg-Essen, Institute for Computer Science and Business Information Systems (ICB).
    2. Ortiz-Barrios, Miguel & Arias-Fonseca, Sebastián & Ishizaka, Alessio & Barbati, Maria & Avendaño-Collante, Betty & Navarro-Jiménez, Eduardo, 2023. "Artificial intelligence and discrete-event simulation for capacity management of intensive care units during the Covid-19 pandemic: A case study," Journal of Business Research, Elsevier, vol. 160(C).
    3. Bernhard Ultsch & Oliver Damm & Philippe Beutels & Joke Bilcke & Bernd Brüggenjürgen & Andreas Gerber-Grote & Wolfgang Greiner & Germaine Hanquet & Raymond Hutubessy & Mark Jit & Mirjam Knol & Rüdiger, 2016. "Methods for Health Economic Evaluation of Vaccines and Immunization Decision Frameworks: A Consensus Framework from a European Vaccine Economics Community," PharmacoEconomics, Springer, vol. 34(3), pages 227-244, March.
    4. Hossein Haji Ali Afzali & Laura Bojke & Jonathan Karnon, 2018. "Model Structuring for Economic Evaluations of New Health Technologies," PharmacoEconomics, Springer, vol. 36(11), pages 1309-1319, November.
    5. Becky Pennington & Alex Filby & Lesley Owen & Matthew Taylor, 2018. "Smoking Cessation: A Comparison of Two Model Structures," PharmacoEconomics, Springer, vol. 36(9), pages 1101-1112, September.
    6. Gemma E. Shields & Mark Wilberforce & Paul Clarkson & Tracey Farragher & Arpana Verma & Linda M. Davies, 2022. "Factors Limiting Subgroup Analysis in Cost-Effectiveness Analysis and a Call for Transparency," PharmacoEconomics, Springer, vol. 40(2), pages 149-156, February.
    7. Fernando Alarid-Escudero & Richard F. MacLehose & Yadira Peralta & Karen M. Kuntz & Eva A. Enns, 2018. "Nonidentifiability in Model Calibration and Implications for Medical Decision Making," Medical Decision Making, , vol. 38(7), pages 810-821, October.
    8. Koen Degeling & Maarten J. IJzerman & Mariel S. Lavieri & Mark Strong & Hendrik Koffijberg, 2020. "Introduction to Metamodeling for Reducing Computational Burden of Advanced Analyses with Health Economic Models: A Structured Overview of Metamodeling Methods in a 6-Step Application Process," Medical Decision Making, , vol. 40(3), pages 348-363, April.
    9. Peter J. Dodd & Jeff J. Pennington & Liza Bronner Murrison & David W. Dowdy, 2018. "Simple Inclusion of Complex Diagnostic Algorithms in Infectious Disease Models for Economic Evaluation," Medical Decision Making, , vol. 38(8), pages 930-941, November.
    10. Jonathan Karnon & James Stahl & Alan Brennan & J. Jaime Caro & Javier Mar & Jörgen Möller, 2012. "Modeling Using Discrete Event Simulation," Medical Decision Making, , vol. 32(5), pages 701-711, September.
    11. Annika Hoyer & Sophie Kaufmann & Ralph Brinks, 2019. "Risk factors in the illness-death model: Simulation study and the partial differential equation about incidence and prevalence," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-10, December.
    12. Olivier Ethgen & Baudouin Standaert, 2012. "Population–versus Cohort–Based Modelling Approaches," PharmacoEconomics, Springer, vol. 30(3), pages 171-181, March.
    13. Stuart J. Wright & William G. Newman & Katherine Payne, 2019. "Accounting for Capacity Constraints in Economic Evaluations of Precision Medicine: A Systematic Review," PharmacoEconomics, Springer, vol. 37(8), pages 1011-1027, August.
    14. Arielle Anderer & Hamsa Bastani & John Silberholz, 2022. "Adaptive Clinical Trial Designs with Surrogates: When Should We Bother?," Management Science, INFORMS, vol. 68(3), pages 1982-2002, March.
    15. Mehdi Javanbakht & Jesse Fishman & Eoin Moloney & Peter Rydqvist & Amir Ansaripour, 2023. "Early Cost-Effectiveness and Price Threshold Analyses of Resmetirom: An Investigational Treatment for Management of Nonalcoholic Steatohepatitis," PharmacoEconomics - Open, Springer, vol. 7(1), pages 93-110, January.
    16. Eren Demir & David Southern, 2017. "Enabling better management of patients: discrete event simulation combined with the STAR approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(5), pages 577-590, May.
    17. Mohsen Ghaffari Darab & Lidia Engel & Dennis Henzler & Michael Lauerer & Eckhard Nagel & Vicki Brown & Cathrine Mihalopoulos, 2024. "Model-Based Economic Evaluations of Interventions for Dementia: An Updated Systematic Review and Quality Assessment," Applied Health Economics and Health Policy, Springer, vol. 22(4), pages 503-525, July.
    18. Jen Kruger & Daniel Pollard & Hasan Basarir & Praveen Thokala & Debbie Cooke & Marie Clark & Rod Bond & Simon Heller & Alan Brennan, 2015. "Incorporating Psychological Predictors of Treatment Response into Health Economic Simulation Models," Medical Decision Making, , vol. 35(7), pages 872-887, October.
    19. Oakley, Jeremy E. & Brennan, Alan & Tappenden, Paul & Chilcott, Jim, 2010. "Simulation sample sizes for Monte Carlo partial EVPI calculations," Journal of Health Economics, Elsevier, vol. 29(3), pages 468-477, May.
    20. Eline M. Krijkamp & Fernando Alarid-Escudero & Eva A. Enns & Hawre J. Jalal & M. G. Myriam Hunink & Petros Pechlivanoglou, 2018. "Microsimulation Modeling for Health Decision Sciences Using R: A Tutorial," Medical Decision Making, , vol. 38(3), pages 400-422, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aphecp:v:17:y:2019:i:6:d:10.1007_s40258-019-00513-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.