IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v38y2018i8p930-941.html
   My bibliography  Save this article

Simple Inclusion of Complex Diagnostic Algorithms in Infectious Disease Models for Economic Evaluation

Author

Listed:
  • Peter J. Dodd
  • Jeff J. Pennington
  • Liza Bronner Murrison
  • David W. Dowdy

Abstract

Introduction . Cost-effectiveness models for infectious disease interventions often require transmission models that capture the indirect benefits from averted subsequent infections. Compartmental models based on ordinary differential equations are commonly used in this context. Decision trees are frequently used in cost-effectiveness modeling and are well suited to describing diagnostic algorithms. However, complex decision trees are laborious to specify as compartmental models and cumbersome to adapt, limiting the detail of algorithms typically included in transmission models. Methods . We consider an approximation replacing a decision tree with a single holding state for systems where the time scale of the diagnostic algorithm is shorter than time scales associated with disease progression or transmission. We describe recursive algorithms for calculating the outcomes and mean costs and delays associated with decision trees, as well as design strategies for computational implementation. We assess the performance of the approximation in a simple model of transmission/diagnosis and its role in simplifying a model of tuberculosis diagnostics. Results . When diagnostic delays were short relative to recovery rates, our approximation provided a good account of infection dynamics and the cumulative costs of diagnosis and treatment. Proportional errors were below 5% so long as the longest delay in our 2-step algorithm was under 20% of the recovery time scale. Specifying new diagnostic algorithms in our tuberculosis model was reduced from several tens to just a few lines of code. Discussion . For conditions characterized by a diagnostic process that is neither instantaneous nor protracted (relative to transmission dynamics), this novel approach retains the advantages of decision trees while embedding them in more complex models of disease transmission. Concise specification and code reuse increase transparency and reduce potential for error.

Suggested Citation

  • Peter J. Dodd & Jeff J. Pennington & Liza Bronner Murrison & David W. Dowdy, 2018. "Simple Inclusion of Complex Diagnostic Algorithms in Infectious Disease Models for Economic Evaluation," Medical Decision Making, , vol. 38(8), pages 930-941, November.
  • Handle: RePEc:sae:medema:v:38:y:2018:i:8:p:930-941
    DOI: 10.1177/0272989X18807438
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X18807438
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X18807438?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alan Brennan & Stephen E. Chick & Ruth Davies, 2006. "A taxonomy of model structures for economic evaluation of health technologies," Health Economics, John Wiley & Sons, Ltd., vol. 15(12), pages 1295-1310, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bernhard Ultsch & Oliver Damm & Philippe Beutels & Joke Bilcke & Bernd Brüggenjürgen & Andreas Gerber-Grote & Wolfgang Greiner & Germaine Hanquet & Raymond Hutubessy & Mark Jit & Mirjam Knol & Rüdiger, 2016. "Methods for Health Economic Evaluation of Vaccines and Immunization Decision Frameworks: A Consensus Framework from a European Vaccine Economics Community," PharmacoEconomics, Springer, vol. 34(3), pages 227-244, March.
    2. Becky Pennington & Alex Filby & Lesley Owen & Matthew Taylor, 2018. "Smoking Cessation: A Comparison of Two Model Structures," PharmacoEconomics, Springer, vol. 36(9), pages 1101-1112, September.
    3. Jonathan Karnon & James Stahl & Alan Brennan & J. Jaime Caro & Javier Mar & Jörgen Möller, 2012. "Modeling Using Discrete Event Simulation," Medical Decision Making, , vol. 32(5), pages 701-711, September.
    4. Stuart J. Wright & William G. Newman & Katherine Payne, 2019. "Accounting for Capacity Constraints in Economic Evaluations of Precision Medicine: A Systematic Review," PharmacoEconomics, Springer, vol. 37(8), pages 1011-1027, August.
    5. Arielle Anderer & Hamsa Bastani & John Silberholz, 2022. "Adaptive Clinical Trial Designs with Surrogates: When Should We Bother?," Management Science, INFORMS, vol. 68(3), pages 1982-2002, March.
    6. Eren Demir & David Southern, 2017. "Enabling better management of patients: discrete event simulation combined with the STAR approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(5), pages 577-590, May.
    7. Jen Kruger & Daniel Pollard & Hasan Basarir & Praveen Thokala & Debbie Cooke & Marie Clark & Rod Bond & Simon Heller & Alan Brennan, 2015. "Incorporating Psychological Predictors of Treatment Response into Health Economic Simulation Models," Medical Decision Making, , vol. 35(7), pages 872-887, October.
    8. Sarah Bates & Thomas Bayley & Paul Norman & Penny Breeze & Alan Brennan, 2020. "A Systematic Review of Methods to Predict Weight Trajectories in Health Economic Models of Behavioral Weight-Management Programs: The Potential Role of Psychosocial Factors," Medical Decision Making, , vol. 40(1), pages 90-105, January.
    9. F. Tomini & F. Prinzen & A. D. I. Asselt, 2016. "A review of economic evaluation models for cardiac resynchronization therapy with implantable cardioverter defibrillators in patients with heart failure," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 17(9), pages 1159-1172, December.
    10. Luis Hernandez & Asli Ozen & Rodrigo DosSantos & Denis Getsios, 2016. "Systematic Review of Model-Based Economic Evaluations of Treatments for Alzheimer’s Disease," PharmacoEconomics, Springer, vol. 34(7), pages 681-707, July.
    11. Sarang Deo & Sameer Mehta & Charles J. Corbett, 2022. "Optimal Scale‐Up of HIV Treatment Programs in Resource‐Limited Settings Under Supply Uncertainty," Production and Operations Management, Production and Operations Management Society, vol. 31(3), pages 883-905, March.
    12. Matthew J. Glover & Edmund Jones & Katya L. Masconi & Michael J. Sweeting & Simon G. Thompson, 2018. "Discrete Event Simulation for Decision Modeling in Health Care: Lessons from Abdominal Aortic Aneurysm Screening," Medical Decision Making, , vol. 38(4), pages 439-451, May.
    13. Caroline Canavan & Joe West & Timothy Card, 2016. "Calculating Total Health Service Utilisation and Costs from Routinely Collected Electronic Health Records Using the Example of Patients with Irritable Bowel Syndrome Before and After Their First Gastr," PharmacoEconomics, Springer, vol. 34(2), pages 181-194, February.
    14. Caroline Canavan & Joe West & Timothy Card, 2016. "Calculating Total Health Service Utilisation and Costs from Routinely Collected Electronic Health Records Using the Example of Patients with Irritable Bowel Syndrome Before and After Their First Gastr," PharmacoEconomics, Springer, vol. 34(2), pages 181-194, February.
    15. L. B. Standfield & T. A. Comans & P. A. Scuffham, 2017. "An empirical comparison of Markov cohort modeling and discrete event simulation in a capacity-constrained health care setting," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 18(1), pages 33-47, January.
    16. Emma McManus & Tracey Sach & Nick Levell, 2018. "The Use of Decision–Analytic Models in Atopic Eczema: A Systematic Review and Critical Appraisal," PharmacoEconomics, Springer, vol. 36(1), pages 51-66, January.
    17. Marion Rauner & Michaela Schaffhauser-Linzatti & Helmut Niessner, 2012. "Resource planning for ambulance services in mass casualty incidents: a DES-based policy model," Health Care Management Science, Springer, vol. 15(3), pages 254-269, September.
    18. Mehdi Najafzadeh & Carlo A Marra & Larry D Lynd & Mohsen Sadatsafavi & J Mark FitzGerald & Bruce McManus & Don Sin, 2012. "Future Impact of Various Interventions on the Burden of COPD in Canada: A Dynamic Population Model," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-12, October.
    19. Candio, Paolo & Meads, David & Hill, Andrew J. & Bojke, Laura, 2020. "Modelling the impact of physical activity on public health: A review and critique," Health Policy, Elsevier, vol. 124(10), pages 1155-1164.
    20. Viana, J. & Brailsford, S.C. & Harindra, V. & Harper, P.R., 2014. "Combining discrete-event simulation and system dynamics in a healthcare setting: A composite model for Chlamydia infection," European Journal of Operational Research, Elsevier, vol. 237(1), pages 196-206.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:38:y:2018:i:8:p:930-941. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.