IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v9y2022i4d10.1007_s40745-019-00235-2.html
   My bibliography  Save this article

Statistical Inference for Truncated Inverse Lomax Distribution and its Application to Survival Data

Author

Listed:
  • Abhimanyu Singh Yadav

    (Central University of Rajasthan)

  • Shivanshi Shukla

    (Central University of Rajasthan)

  • Amrita Kumari

    (Central University of Rajasthan)

Abstract

In this article, truncated version of the inverse Lomax distribution has been introduced. Different statistical properties such as survival, hazard rate, reverse hazard rate, cumulative hazard rate, quantile function of the new distribution have been derived. Order statistics is also discussed. Secondly, various classical estimation procedures are used to estimate the unknown parameter of the model with the effect of truncation. Monte Carlo simulation study has been conducted for different variation of the model parameters to compare the performances of the estimators obtained by different methods of estimation. Finally, a cancer data set is used to illustrate the practical applicability of the proposed model.

Suggested Citation

  • Abhimanyu Singh Yadav & Shivanshi Shukla & Amrita Kumari, 2022. "Statistical Inference for Truncated Inverse Lomax Distribution and its Application to Survival Data," Annals of Data Science, Springer, vol. 9(4), pages 829-845, August.
  • Handle: RePEc:spr:aodasc:v:9:y:2022:i:4:d:10.1007_s40745-019-00235-2
    DOI: 10.1007/s40745-019-00235-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-019-00235-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-019-00235-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kundu, Debasis & Raqab, Mohammad Z., 2005. "Generalized Rayleigh distribution: different methods of estimations," Computational Statistics & Data Analysis, Elsevier, vol. 49(1), pages 187-200, April.
    2. Mandel, Micha, 2007. "Censoring and TruncationHighlighting the Differences," The American Statistician, American Statistical Association, vol. 61, pages 321-324, November.
    3. Aban, Inmaculada B. & Meerschaert, Mark M. & Panorska, Anna K., 2006. "Parameter Estimation for the Truncated Pareto Distribution," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 270-277, March.
    4. Zhang, Tieling & Xie, Min, 2011. "On the upper truncated Weibull distribution and its reliability implications," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 194-200.
    5. Abhimanyu Singh Yadav & Sanjay Kumar Singh & Umesh Singh, 2016. "On Hybrid Censored Inverse Lomax Distribution: Application to the Survival Data," Statistica, Department of Statistics, University of Bologna, vol. 76(2), pages 185-203.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad, Abd EL-Baset A. & Ghazal, M.G.M., 2020. "Exponentiated additive Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    2. Farha Sultana & Yogesh Mani Tripathi & Shuo-Jye Wu & Tanmay Sen, 2022. "Inference for Kumaraswamy Distribution Based on Type I Progressive Hybrid Censoring," Annals of Data Science, Springer, vol. 9(6), pages 1283-1307, December.
    3. Castillo, Joan del & Serra, Isabel, 2015. "Likelihood inference for generalized Pareto distribution," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 116-128.
    4. Shahzad Hussain & Sajjad Haider Bhatti & Tanvir Ahmad & Muhammad Ahmed Shehzad, 2021. "Parameter estimation of the Pareto distribution using least squares approaches blended with different rank methods and its applications in modeling natural catastrophes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1693-1708, June.
    5. Ranjan, Rakesh & Sen, Rijji & Upadhyay, Satyanshu K., 2021. "Bayes analysis of some important lifetime models using MCMC based approaches when the observations are left truncated and right censored," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    6. Blázquez de Paz, Mario, 2018. "Electricity auctions in the presence of transmission constraints and transmission costs," Energy Economics, Elsevier, vol. 74(C), pages 605-627.
    7. J. Park & T. P. Seager & P. S. C. Rao & M. Convertino & I. Linkov, 2013. "Integrating Risk and Resilience Approaches to Catastrophe Management in Engineering Systems," Risk Analysis, John Wiley & Sons, vol. 33(3), pages 356-367, March.
    8. Kwame Boamah‐Addo & Tomasz J. Kozubowski & Anna K. Panorska, 2023. "A discrete truncated Zipf distribution," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(2), pages 156-187, May.
    9. Wang, Yulong & Xiao, Zhijie, 2022. "Estimation and inference about tail features with tail censored data," Journal of Econometrics, Elsevier, vol. 230(2), pages 363-387.
    10. Khan, Ruhul Ali, 2023. "Two-sample nonparametric test for proportional reversed hazards," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    11. Marek Arendarczyk & Tomasz J. Kozubowski & Anna K. Panorska, 2022. "The Greenwood statistic, stochastic dominance, clustering and heavy tails," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 331-352, March.
    12. Kathrin Kirchen & William Harbert & Jay Apt & M. Granger Morgan, 2020. "A Solar‐Centric Approach to Improving Estimates of Exposure Processes for Coronal Mass Ejections," Risk Analysis, John Wiley & Sons, vol. 40(5), pages 1020-1039, May.
    13. Showkat Ahmad Lone & Tabassum Naz Sindhu & Marwa K. H. Hassan & Tahani A. Abushal & Sadia Anwar & Anum Shafiq, 2023. "Theoretical Structure and Applications of a Newly Enhanced Gumbel Type II Model," Mathematics, MDPI, vol. 11(8), pages 1-18, April.
    14. Ekaterina Morozova & Vladimir Panov, 2021. "Extreme Value Analysis for Mixture Models with Heavy-Tailed Impurity," Mathematics, MDPI, vol. 9(18), pages 1-24, September.
    15. Hürlimann, Werner, 2015. "On the uniform random upper bound family of first significant digit distributions," Journal of Informetrics, Elsevier, vol. 9(2), pages 349-358.
    16. Khieu, Hoang & Wälde, Klaus, 2023. "Capital income risk and the dynamics of the wealth distribution," Economic Modelling, Elsevier, vol. 122(C).
    17. Ali İ. Genç, 2021. "Products, Sums and Quotients of Upper Truncated Pareto Random Variables with an Application in Hydrology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 369-383, January.
    18. Gauss Cordeiro & Cláudio Cristino & Elizabeth Hashimoto & Edwin Ortega, 2013. "The beta generalized Rayleigh distribution with applications to lifetime data," Statistical Papers, Springer, vol. 54(1), pages 133-161, February.
    19. Amal S. Hassan & Ibrahim M. Almanjahie & Amer Ibrahim Al-Omari & Loai Alzoubi & Heba Fathy Nagy, 2023. "Stress–Strength Modeling Using Median-Ranked Set Sampling: Estimation, Simulation, and Application," Mathematics, MDPI, vol. 11(2), pages 1-19, January.
    20. Franziska Bremus & Claudia M. Buch & Katheryn N. Russ & Monika Schnitzer, 2018. "Big Banks and Macroeconomic Outcomes: Theory and Cross‐Country Evidence of Granularity," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(8), pages 1785-1825, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:9:y:2022:i:4:d:10.1007_s40745-019-00235-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.