IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v6y2019i3d10.1007_s40745-018-0170-3.html
   My bibliography  Save this article

Exponentiated Generalized Power Series Family of Distributions

Author

Listed:
  • Suleman Nasiru

    (Pan African University)

  • Peter N. Mwita

    (Machakos University)

  • Oscar Ngesa

    (Taita Taveta University)

Abstract

In this paper, a new family of distributions called the exponentiated generalized power series family is proposed and studied. Statistical properties such as stochastic order, quantile function, entropy, mean residual life and order statistics were derived. Bivariate and multivariate extensions of the family was proposed. The method of maximum likelihood estimation was proposed for the estimation of the parameters. Some special distributions from the family were defined and their applications were demonstrated with real data sets.

Suggested Citation

  • Suleman Nasiru & Peter N. Mwita & Oscar Ngesa, 2019. "Exponentiated Generalized Power Series Family of Distributions," Annals of Data Science, Springer, vol. 6(3), pages 463-489, September.
  • Handle: RePEc:spr:aodasc:v:6:y:2019:i:3:d:10.1007_s40745-018-0170-3
    DOI: 10.1007/s40745-018-0170-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-018-0170-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-018-0170-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Suleman Nasiru & Peter N. Mwita & Oscar Ngesa, 2017. "Exponentiated Generalized Transformed-Transformer Family of Distributions," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 6(4), pages 1-1.
    2. Ayman Alzaatreh & Carl Lee & Felix Famoye, 2013. "A new method for generating families of continuous distributions," METRON, Springer;Sapienza Università di Roma, vol. 71(1), pages 63-79, June.
    3. Zohdy M. Nofal & Ahmed Z. Afify & Haitham M. Yousof & Gauss M. Cordeiro, 2017. "The generalized transmuted-G family of distributions," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(8), pages 4119-4136, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sandeep Kumar Maurya & Saralees Nadarajah, 2021. "Poisson Generated Family of Distributions: A Review," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 484-540, November.
    2. Maria T. Vasileva, 2023. "On Topp-Leone-G Power Series: Saturation in the Hausdorff Sense and Applications," Mathematics, MDPI, vol. 11(22), pages 1-11, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boikanyo Makubate & Fastel Chipepa & Broderick Oluyede & Peter O. Peter, 2021. "The Marshall-Olkin Half Logistic-G Family of Distributions With Applications," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(2), pages 120-120, March.
    2. Clement Boateng Ampadu & Suleman Nasiru & Girish Babu, 2018. "Further Developments on the T-Transmuted X Family of Distributions II," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 8(2), pages 22-24, September.
    3. Shahdie Marganpoor & Vahid Ranjbar & Morad Alizadeh & Kamel Abdollahnezhad, 2020. "Generalised Odd Frechet Family of Distributions: Properties and Applications," Statistics in Transition New Series, Polish Statistical Association, vol. 21(3), pages 109-128, September.
    4. Morad Alizadeh & Ahmed Z. Afify & M. S. Eliwa & Sajid Ali, 2020. "The odd log-logistic Lindley-G family of distributions: properties, Bayesian and non-Bayesian estimation with applications," Computational Statistics, Springer, vol. 35(1), pages 281-308, March.
    5. Lea Anzagra & Solomon Sarpong & Suleman Nasiru, 2022. "Odd Chen-G Family of Distributions," Annals of Data Science, Springer, vol. 9(2), pages 369-391, April.
    6. Majdah M. Badr & Ibrahim Elbatal & Farrukh Jamal & Christophe Chesneau & Mohammed Elgarhy, 2020. "The Transmuted Odd Fréchet-G Family of Distributions: Theory and Applications," Mathematics, MDPI, vol. 8(6), pages 1-20, June.
    7. Marganpoor Shahdie & Ranjbar Vahid & Alizadeh Morad & Abdollahnezhad Kamel, 2020. "Generalised Odd Frechet Family of Distributions: Properties and Applications," Statistics in Transition New Series, Statistics Poland, vol. 21(3), pages 109-128, September.
    8. Zubair Ahmad & M. Elgarhy & G. G. Hamedani, 2018. "A new Weibull-X family of distributions: properties, characterizations and applications," Journal of Statistical Distributions and Applications, Springer, vol. 5(1), pages 1-18, December.
    9. Mahmoud Aldeni & Carl Lee & Felix Famoye, 2017. "Families of distributions arising from the quantile of generalized lambda distribution," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-18, December.
    10. Ramadan A. ZeinEldin & Christophe Chesneau & Farrukh Jamal & Mohammed Elgarhy, 2019. "Statistical Properties and Different Methods of Estimation for Type I Half Logistic Inverted Kumaraswamy Distribution," Mathematics, MDPI, vol. 7(10), pages 1-24, October.
    11. A. A. Ogunde & S. T. Fayose & B. Ajayi & D. O. Omosigho, 2020. "Properties, Inference and Applications of Alpha Power Extended Inverted Weibull Distribution," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 9(6), pages 1-90, November.
    12. Sajid Hussain & Mahmood Ul Hassan & Muhammad Sajid Rashid & Rashid Ahmed, 2023. "The Exponentiated Power Alpha Index Generalized Family of Distributions: Properties and Applications," Mathematics, MDPI, vol. 11(4), pages 1-19, February.
    13. Abdulhakim A. Al-Babtain & Ibrahim Elbatal & Christophe Chesneau & Farrukh Jamal, 2020. "Box-Cox Gamma-G Family of Distributions: Theory and Applications," Mathematics, MDPI, vol. 8(10), pages 1-24, October.
    14. Showkat Ahmad Lone & Tabassum Naz Sindhu & Marwa K. H. Hassan & Tahani A. Abushal & Sadia Anwar & Anum Shafiq, 2023. "Theoretical Structure and Applications of a Newly Enhanced Gumbel Type II Model," Mathematics, MDPI, vol. 11(8), pages 1-18, April.
    15. Jiong Liu & R. A. Serota, 2023. "Rethinking Generalized Beta family of distributions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(2), pages 1-14, February.
    16. Amal S. Hassan & Said G. Nassr, 2019. "Power Lindley-G Family of Distributions," Annals of Data Science, Springer, vol. 6(2), pages 189-210, June.
    17. Mohamed S. Eliwa & Muhammad H. Tahir & Muhammad A. Hussain & Bader Almohaimeed & Afrah Al-Bossly & Mahmoud El-Morshedy, 2023. "Univariate Probability-G Classes for Scattered Samples under Different Forms of Hazard: Continuous and Discrete Version with Their Inferences Tests," Mathematics, MDPI, vol. 11(13), pages 1-24, June.
    18. Salem A. Alyami & Ibrahim Elbatal & Naif Alotaibi & Ehab M. Almetwally & Mohammed Elgarhy, 2022. "Modeling to Factor Productivity of the United Kingdom Food Chain: Using a New Lifetime-Generated Family of Distributions," Sustainability, MDPI, vol. 14(14), pages 1-28, July.
    19. Hesham Reyad & Mustafa Ç. Korkmaz & Ahmed Z. Afify & G. G. Hamedani & Soha Othman, 2021. "The Fréchet Topp Leone-G Family of Distributions: Properties, Characterizations and Applications," Annals of Data Science, Springer, vol. 8(2), pages 345-366, June.
    20. Ahmad Alzaghal & Duha Hamed, 2019. "New Families of Generalized Lomax Distributions: Properties and Applications," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 8(6), pages 1-51, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:6:y:2019:i:3:d:10.1007_s40745-018-0170-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.