IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v6y2019i2d10.1007_s40745-018-0183-y.html
   My bibliography  Save this article

On the Inverse Power Lomax Distribution

Author

Listed:
  • Amal S. Hassan

    (Cairo University)

  • Marwa Abd-Allah

    (Cairo University)

Abstract

We introduce and study a new three-parameter lifetime distribution named as the inverse power Lomax. The proposed distribution is obtained as the inverse form of the power Lomax distribution. Some statistical properties of the inverse power Lomax model are implemented. Based on censored samples, maximum likelihood estimators of the model parameters are obtained. An intensive simulation study is performed for evaluating the behavior of estimators based on their biases and mean square errors. Superiority of the new model over some well-known distributions is illustrated by means of real data sets. The results revealed the fact that; the suggested model can produce better fits than some well-known distributions.

Suggested Citation

  • Amal S. Hassan & Marwa Abd-Allah, 2019. "On the Inverse Power Lomax Distribution," Annals of Data Science, Springer, vol. 6(2), pages 259-278, June.
  • Handle: RePEc:spr:aodasc:v:6:y:2019:i:2:d:10.1007_s40745-018-0183-y
    DOI: 10.1007/s40745-018-0183-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-018-0183-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-018-0183-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carl M. Harris, 1968. "The Pareto Distribution as a Queue Service Discipline," Operations Research, INFORMS, vol. 16(2), pages 307-313, April.
    2. Chahkandi, M. & Ganjali, M., 2009. "On some lifetime distributions with decreasing failure rate," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4433-4440, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ehab M. Almetwally, 2022. "The Odd Weibull Inverse Topp–Leone Distribution with Applications to COVID-19 Data," Annals of Data Science, Springer, vol. 9(1), pages 121-140, February.
    2. Sanku Dey & Emrah Altun & Devendra Kumar & Indranil Ghosh, 2023. "The Reflected-Shifted-Truncated Lomax Distribution: Associated Inference with Applications," Annals of Data Science, Springer, vol. 10(3), pages 805-828, June.
    3. Vasili B.V. Nagarjuna & R. Vishnu Vardhan & Christophe Chesneau, 2021. "Kumaraswamy Generalized Power Lomax Distributionand Its Applications," Stats, MDPI, vol. 4(1), pages 1-18, January.
    4. El-Sherpieny, El-Sayed A. & Almetwally, Ehab M. & Muhammed, Hiba Z., 2020. "Progressive Type-II hybrid censored schemes based on maximum product spacing with application to Power Lomax distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    5. Mohamed A. W. Mahmoud & Mohamed G. M. Ghazal & Hossam M. M. Radwan, 2023. "Bayesian Estimation and Optimal Censoring of Inverted Generalized Linear Exponential Distribution Using Progressive First Failure Censoring," Annals of Data Science, Springer, vol. 10(2), pages 527-554, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malinovskii, Vsevolod K. & Kosova, Ksenia O., 2014. "Simulation analysis of ruin capital in Sparre Andersen’s model of risk," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 184-193.
    2. Gauss Cordeiro & Josemar Rodrigues & Mário Castro, 2012. "The exponential COM-Poisson distribution," Statistical Papers, Springer, vol. 53(3), pages 653-664, August.
    3. Zeinab Amin, 2008. "Bayesian inference for the Pareto lifetime model under progressive censoring with binomial removals," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(11), pages 1203-1217.
    4. Maha A Aldahlan & Farrukh Jamal & Christophe Chesneau & Ibrahim Elbatal & Mohammed Elgarhy, 2020. "Exponentiated power generalized Weibull power series family of distributions: Properties, estimation and applications," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-25, March.
    5. Bercher, J.-F. & Vignat, C., 2008. "A new look at q-exponential distributions via excess statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5422-5432.
    6. Barreto-Souza, Wagner, 2012. "Bivariate gamma-geometric law and its induced Lévy process," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 130-145.
    7. Mahmoudi, Eisa & Jafari, Ali Akbar, 2012. "Generalized exponential–power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4047-4066.
    8. Saralees Nadarajah & Božidar Popović & Miroslav Ristić, 2013. "Compounding: an R package for computing continuous distributions obtained by compounding a continuous and a discrete distribution," Computational Statistics, Springer, vol. 28(3), pages 977-992, June.
    9. Cramer, Erhard & Schmiedt, Anja Bettina, 2011. "Progressively Type-II censored competing risks data from Lomax distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1285-1303, March.
    10. Alan Washburn, 2006. "A sequential Bayesian generalization of the Jelinski–Moranda software reliability model," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(4), pages 354-362, June.
    11. Elfessi, Abdulaziz & Chun Jin, 1996. "On robust estimation of the common scale parameter of several Pareto distributions," Statistics & Probability Letters, Elsevier, vol. 29(4), pages 345-352, September.
    12. Rasool Roozegar & Saralees Nadarajah & Eisa Mahmoudi, 2022. "The Power Series Exponential Power Series Distributions with Applications to Failure Data Sets," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 44-78, May.
    13. Bakouch, Hassan S. & Ristić, Miroslav M. & Asgharzadeh, A. & Esmaily, L. & Al-Zahrani, Bander M., 2012. "An exponentiated exponential binomial distribution with application," Statistics & Probability Letters, Elsevier, vol. 82(6), pages 1067-1081.
    14. Vicente G. Cancho & Márcia A. C. Macera & Adriano K. Suzuki & Francisco Louzada & Katherine E. C. Zavaleta, 2020. "A new long-term survival model with dispersion induced by discrete frailty," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 221-244, April.
    15. Bagheri, S.F. & Bahrami Samani, E. & Ganjali, M., 2016. "The generalized modified Weibull power series distribution: Theory and applications," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 136-160.
    16. Muhammad H Tahir & Gauss M. Cordeiro, 2016. "Compounding of distributions: a survey and new generalized classes," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-35, December.
    17. Amal S. Hassan & Ibrahim M. Almanjahie & Amer Ibrahim Al-Omari & Loai Alzoubi & Heba Fathy Nagy, 2023. "Stress–Strength Modeling Using Median-Ranked Set Sampling: Estimation, Simulation, and Application," Mathematics, MDPI, vol. 11(2), pages 1-19, January.
    18. D. Kern, 1983. "Minimum variance unbiased estimation in the Pareto distribution," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 30(1), pages 15-19, December.
    19. Rasool Roozegar & G. G. Hamedani & Leila Amiri & Fatemeh Esfandiyari, 2020. "A New Family of Lifetime Distributions: Theory, Application and Characterizations," Annals of Data Science, Springer, vol. 7(1), pages 109-138, March.
    20. Brill, P.H. & Huang, M.L. & Hlynka, M., 2020. "On the service time in a workload-barrier M/G/1 queue with accepted and blocked customers," European Journal of Operational Research, Elsevier, vol. 283(1), pages 235-243.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:6:y:2019:i:2:d:10.1007_s40745-018-0183-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.